
	

Continue

https://feedproxy.google.com/~r/1eyvgo/aqOO/~3/PmAiG5ZyT-k/uplcv?utm_term=android+studio+apk+build


Android	studio	apk	build

Android	studio	build	release	apk	without	signing.	Android	studio	build	debug	apk.	React	native	build	apk	without	android	studio.	Build	signed	apk	android	studio.	Flutter	build	apk	android	studio.	Android	studio	build	release	apk.	Android	studio	apk	build	location.	Build	apk	without	android	studio.

In	this	guide,	he	will	show	you	how	to	create	an	APK	signed	using	Android	Studio.	Let's	start	by	exporting	your	BBDOC	file	on	Android.a	will	be	displayed.	You	can	create	your	bundle	ID	or	in	this	case,	allows	you	to	click	Continue	using	the	pre-defined	ID	you	will	ask	you	to	save	in	a	position.	In	this	guide,	I'm	using	Android	Studio	3.1.2.Open	Android
Studio	and	select	the	following	option.	And	then	browse	the	location	where	you	saved	your	exported	file.	Open	the	Android	folder	and	select	Build.gradle.it	so	you	will	start	building	an	Android	Project	Gradle.	We	will	have	open	Android	studio,	click	the	build,	then	select	Generate	APK	signed.	Click	Create	New.	In	this	window,	we	click	on	the
Highlighted	button	below	to	select	the	location	where	you	want	to	save	the	button.	In	the	underlying	sample	image,	I	selected	the	desktop	and	named	the	"Sample	key"	key.	Make	sure	JKS	is	selected.	Then	click	OK.Next	Step	is	to	fill	the	fields	with	the	necessary	information.	Then	click	OK..IT	will	then	take	place	below.	Click	Next.	Sure	that	V2	is
selected,	click	Finish.	It	may	take	a	few	minutes	to	create	your	APK.	Once	done,	you	can	click	on	the	link	to	find	the	link	on	the	notification	box	or	if	you	do	not	notify,	you	can	click	on	Access	Access	in	the	lower	right	corner	of	Android	Studio.da	Lì	you	will	see	the	LiTate	link	.	Click	on	the	link	to	show	your	APK	instructions	created	above,	here	is	here
that	my	APK	is	saved.Important	Note:	Remember	to	save	a	copy	of	the	Keystore	information	/	password	as	it	should	be	used	for	all	upgrading	updates	On	the	game	store.	Android	Studio	allows	you	to	create	two	types	of	APK	files.	The	first	are	Debug	APK	files	that	are	generated	exclusively	for	test	purposes.	They	will	correspond	to	your	Android
phone.	However,	they	cannot	be	loaded	into	the	game	store	or	made	available	to	the	public.	Secondly,	you	can	generate	signed	APK	files.	The	signed	APK	files	are	at	your	fingertips	when	you	tested	your	application	and	is	ready	to	be	loaded	on	the	game	store	and	released	to	the	general	public.	This	tutorial	will	show	you	how	to	create	an	Android	app
generating	APK	files	using	Android	Studio.	First:	Open	a	project	file	in	Android	Studio.	If	you	don't	have	a	project	file	yet,	just	create	a	new	project.	Creating	an	APK	file	generation	of	a	Debug	APK	file	is	easy	and	is	a	matter	of	just	a	few	clicks.	First,	open	your	project	or	application	you	want	to	import	into	an	APK	file.	Then,	select	Build>	Build	bundle
/	apk	/	s>	build	apk	(s)	Ã	¢	from	the	toolbar	menu.	Android	Studio	will	take	some	moments	to	generate	an	APK	file.	Once	the	APK	Build	has	been	completed,	you	will	receive	a	notification	in	the	lower	right	corner	of	the	screen.	From	that	notification,	select	Identify	and	you	will	be	brought	to	the	path	of	the	APK	file.	If	you	lack	the	notification,	you	can
still	locate	the	APK	file	in	the	following	path	within	the	project	folder:	app	/	build	/	output	/	apk	/	debug.	The	file	is	called	app-debug.apk	by	default.	Creating	a	signed	APK	file	to	generate	a	signed	APK	file,	open	the	Generate	menu	from	the	toolbar	and	select	Generate	signed	bundle	/	apk.	This	opens	a	screen	where	you	have	to	choose	between	the
creation	of	Ana	Android	app	bundle,	and	creating	an	APK	file.	Check	the	APK	radio	button	and	proceed	to	the	next	window.	In	the	next	window,	you	will	be	shown	the	form	(your	application)	for	which	the	APK	file	is	generated.	You	will	be	asked	of	your	key	store	path,	key	store	password,	key	alias	and	key	password.	Creating	a	new	key	archive
assuming	this	is	the	first	time	you	¢	Rea	Of	a	signed	APK	file,	you	will	have	to	create	a	new	key	archive.	The	keys	are	used	by	the	developer	to	access	their	application	once	uploaded	to	the	playback	store.	The	requirement	of	keys	usually	comes	when	you	need	to	update	your	application.	All	keys	are	stored	in	the	key	store.	Both	the	keys	and	keys	are
protected	by	their	own	passwords	Passwords	should	be	at	least	six	length	characters.	Also,	it's	a	good	practice	to	maintain	more	copies	of	your	keys	because	they	are	your	only	race	for	your	application.	If	the	key	is	lost,	you	won't	be	able	to	access	your	application	or	update	it.	The	creation	of	your	app	requires	creating	a	new	key	store.	To	do	this,
select	Create	New.	You	will	find	it	under	the	input	field	in	which	the	path	of	the	key	store	is	inserted.	You	will	then	be	redirected	to	a	new	window.	In	the	new	window,	enter	the	path	for	your	new	key	store,	then	enter	a	password	to	protect	it.	In	the	same	window,	you	will	also	set	a	new	key	for	your	application.	Enter	an	identity	for	the	key	in	the	Alias	
key	field	and	then	enter	a	password	for	this.	You	can	keep	the	same	password	of	that	of	your	key	store,	but	it's	a	good	practice	to	give	a	new	password	to	each	of	your	keys.	The	same	applies	to	the	key	alias.	The	next	field	defines	the	validity	of	your	application.	This	is	the	duration	after	which	the	key	to	your	application	runs	out,	leaving	the	application
inaccessible.	The	default	validity	for	a	key	is	25	years.	For	each	key	you	generate,	you	gave	a	certificate	that	contains	all	the	information	about	you	and	your	company.	You	don't	necessarily	have	to	fill	in	all	the	details	...	just	choose	the	ones	you	think	should	go	to	your	certificate.	A	key	will	still	be	generated,	even	without	filling	every	field	of	the
certificate.	Finish	After	filling	out	details	for	the	certificate,	select	OK.	You	will	then	be	directed	to	the	group	generates	bundles	or	apk.	Here,	all	fields	will	now	be	pre-filled	for	you.	Go	through	all	the	details	to	stay	safe.	Then	select	Next.	In	the	last	screen,	now	you	will	be	able	to	see	the	destination	of	your	signed	APK	file.	Under	this,	you	will	see	two
other	options:	DebugÃ	¢	and	release.	Debug	is	used	when	the	application	is	still	in	the	test	phase.	Because	your	application	has	passed	the	test	phase	and	is	ready	for	distribution,	select	Release.	There	are	two	other	check	boxes	towards	the	lower	part	of	the	screen.	Select	V2	(Full	APK	Signature)	and	click	Finish.	You	will	be	notified	by	Android	Studio
once	the	APK	Build	has	been	completed.	Now	you	can	click	Detote	from	the	notification	to	open	the	file	path.	The	APK	file	signed	is	called	app-release.apk	by	default.	You	will	find	it	in	your	project	folder	in	the	release	app	/	directory	directory.	Summary	These	are	the	steps	you	need	to	follow	to	generate	APK	and	APK	files	signed	for	the	App	test
purposes	and	making	it	downloadable	via	Google	Play:	Create	an	APK	file	creates	the	project	in	Android	Studio.	Select	Build>	Build	bundle	/	apk	/	s)>	Build	apk	(s)	Ã	¢	from	the	toolbar	menu.	Now	you	can	transfer	your	debug	APK	file	to	your	Android	phone	and	test	it	for	bugs.	You	can	also	try	it	on	your	PC	using	the	Android	emulator.	Create	a	signed
APK	file	creates	the	project	in	Android	Studio.	Select	Build>	Bundle	/	APK	signed	by	the	toolbar	menu.	Configure	settings	for	your	APK	file	and	possibly	create	a	new	key	store	and	keys.	Create	a	new	key	archive	and	key	Select	a	key	store	path.	Enter	a	password	for	your	key	store.	Give	your	key	an	identity,	a	validity	period	and	a	password.	Insert	any
personal	or	organizational	details	you	want	to	include	in	the	key	certificate.	Now	you	can	release	this	signed	APK	file	to	the	public	by	publishing	it	on	Google	Play	Store.	Easy	but	complicated,	right?	We	hope	that	this	tutorial	has	helped	to	clarify	any	confusion	you	have	had	to	generate	APK	and	signed	APK	files	and	improved	the	understanding	of	both
types	of	files.	This	guide	shows	how	Your	SDK	environment	to	distribute	the	Cordoba	apps	for	Android	devices	and	how	to	optionally	use	the	Android	centered	command	line	tools	in	the	development	workflow.	You	need	to	install	the	Android	SDK	regardless	of	whether	you	want	to	use	these	shell	tools	centered	on	the	platform	or	Cro-Platform	Cordova
CLI	for	development.	For	a	comparison	between	between	Two	development	paths,	see	the	overview.	For	details	on	the	cli,	see	Reference	CLI	Cordova.	Requirements	and	support	Cordoba	for	Android	requires	the	Android	SDK	that	can	be	installed	on	OS	X,	Linux	or	Windows.	See	Android	SDK	system	requirements.	The	last	Android	package	of
Cordoba	supports	the	Android	29	Android	API	level	29.	Supported	Android	API	levels	and	Android	versions	for	the	last	few	Cordova-Android	versions	are	available	in	this	table:	Cordova-Android	supported	version	Android	Android	Android	levels	equivalent	Version	9.xx	22	-	29	5.1	-	10.0.0	8.xx	19	-	28	4.4	-	9.0.0	7.xx	19	-	27	4.4	-	8.1	6.xx	16	-	26	4.1	-
8.0.0	5.xx	14	-	23	4.0	-	6.0.1	4.1.x	14	-	22	4.0	-	5.1	4.0.x	10	-	22	2.3.3	-	5.1	3.7.x	10	-	21	2.3.3	-	5.0.2	Please	note	that	the	versions	listed	here	are	for	the	package	Android	by	Cordoba,	Cordova-Android,	and	not	for	the	Cordova	CLI.	To	determine	which	version	of	the	Cordova	Android	package	is	installed	in	the	Cordova	project,	run	the	Cordova	Platform
LS	command	in	the	directory	that	contains	your	project.	As	a	general	rule,	Android	versions	were	not	supported	by	Cordoba	while	immersed	below	5%	on	the	Google	distribution	dashboard.	Installing	Java	Development	Kit	Requirements	(JDK)	Install	Java	Development	Kit	(JDK)	8.	When	installing	on	Windows	you	must	also	set	the	Java_Home
environment	variable	based	on	the	JDK	installation	path	(see	setting	environment	variables)	Gradle	As	of	Cordova-Android	6.4.	0,	Gradle	is	now	necessary	to	be	installed	to	build	Android.	When	installing	on	Windows,	you	need	to	add	gradle	to	the	path,	(see	setting	environment	variables)	Android	SDK	installs	Android	Studio.	Follow	the	instructions	on
the	Android	developer	site	connected	to	start.	The	Android	Studio	opening	for	the	first	time	will	guide	you	through	the	installation	process	of	the	Android	SDK.	Adding	SDK	packages	After	installing	the	Android	SDK,	you	need	to	install	packages	for	any	API	level	you	want	to	destine.	We	recommend	installing	the	highest	SDK	version	that	the	version	of
Cordova-Android	supports	(see	requirements	and	support).	Open	the	Android	SDK	manager	(Tools>	SDK	Manager	in	Android	Studio	or	SDKManager	on	the	command	line)	and	make	sure	the	following	is	installed:	Android	Platform	SDK	for	the	targeted	version	of	Android	Android	SDK	Build-Tools	version	29.0.2	or	higher	Android	tools	SDK:	In	Android
Studio	3.6	or	later,	you	need	to	manually	add	the	old	version	of	the	Android	SDK	tools.	To	do	this:	Open	Android	Studio	SDK	Manager	On	the	SDK	Android	Tools	tab	in	the	Android	Stdk	tab,	uncheck	hide	obsolete	packages	Check	the	Android	SDK	tools	(obsolete)	see	the	Android	documentation	on	the	installation	of	SDK	packages	for	more	details.
Setting	the	environment	variables	Cordova	tools	require	some	environment	variables	to	be	set	to	work	properly.	The	CLI	will	try	to	set	these	variables	for	you,	but	in	some	cases	it	may	be	necessary	to	set	them	manually.	The	following	variables	must	be	updated:	set	the	Java_Home	environment	variable	to	the	location	of	your	JDK	installation	Set	the
Android_SDK_ROOT	environment	variable	to	the	Android	SDK	installation	location	is	also	advisable	to	add	the	tools,	tools	/	trash	and	Android	platform	SDK	-tools	Directory	to	your	Path	OS	X	and	Linux	on	a	Mac	or	Linux,	you	can	use	a	text	editor	to	create	or	edit	the	~	/	.bash_profile	file.	To	set	up	an	environment	variable,	add	a	line	that	uses	export
as	I	know	(replace	the	path	with	your	local	installation):	Export	Android_SDK_Root	=	/	Development	/	Android-SDK	/	to	update	the	Add	a	line	similar	to	the	following	(replace	routes	with	the	local	installation	location	Android	SDK):	Export	Path	=	$	{route}:	/	development	/	Android-SDK	/	platform-tools:	/	development	/	Android-SDK	/	Tools	Reload	the
terminal	To	view	this	modification	reflected	or	run	the	following	command:	Windows:	Windows:	Windows:	Windows	These	steps	may	vary	depending	on	the	installed	version	of	Windows.	Close	and	reopen	any	Windows	prompt	commands	after	making	changes	to	see	them	reflexes.	Click	on	Start	menu	in	the	lower	left	corner	of	the	desktop	in	the
search	bar,	search	for	environment	variables	and	select	modify	the	system	environment	variables	from	the	options	that	appear	in	the	displayed	window,	click	the	Environment	Variables	button	to	create	a	new	variable	of	Environment:	Click	New	...	and	enter	the	name	and	value	of	the	variable	to	set	the	path:	Select	the	path	variable	and	press	Edit.
Add	registrations	for	locations	relevant	to	the	route.	For	example	(replace	routes	with	the	local	Android	SDK	installation	location):	C:	Users	[Your	User]	AppData	Local	Android	SDK	Platform-Tools	C:	Users	[Your	User]	AppData	Local	Android	SDK	Tools	Project	Configuration	Configuration	Setting	an	emulator	If	you	want	to	run	the	Cordova	app	on	an
Android	emulator,	you	must	first	create	an	Android	virtual	device	(AVD).	See	Android	Documentation	for	Avds	Management,	configuring	the	emulator	and	configure	hardware	acceleration.	Once	your	AVD	has	been	configured,	you	need	to	implement	the	cordova	application	to	the	emulator	by	executing:	cordova-android@4.0.0	gradble	as
configuration,	cordoba	for	Android	projects	are	built	using	gradble.	For	construction	instructions	with	the	ant,	refer	to	previous	versions	of	the	documentation.	Please	note	that	ant	buildings	are	deprecated	as	Android	25.3.0	SDK	tools.	Setting	the	properties	Gradle	You	can	configure	the	Body	Build	by	setting	the	values	of	certain	gradle	properties
that	Cordova	exposes.	The	following	properties	are	available	to	be	set:	Description	of	the	CDVBuildMoltipleaPlks	property	If	this	is	set,	it	will	be	generated	multiple	APK	file:	one	by	native	platform	supported	by	library	projects	(X86,	arm,	etc.).	This	can	be	important	if	your	project	uses	large	native	libraries,	which	can	dramatically	increase	the
generated	apk	size.	If	not	set,	a	single	APK	will	be	generated	which	can	be	used	on	all	CDVVVersionCode	devices	overwrite	the	set	of	versions	set	in	AndroidManifest.xml	cdvrelesignessigningpropertinesfile	default	default:	signature-signing.propertiespath	to	a	.properties	file	that	contains	signature	information	for	the	buildings	release	(see	signature
an	app)	cdvdebugsigningpropertiesfile	default:	debug-signing.propertiespath	for	a	.properties	file	containing	signature	information	for	debug	builds	(see	signature	of	an	app).	Useful	when	you	need	to	share	a	signature	key	with	other	CDVMinsdkVersion	developers	overwrite	the	Minsdkversion	value	set	in	AndroidManifest.xml.	Useful	when	creating
more	APK	based	on	the	SDK	CDVBuildToolSversion	version	overwrites	the	Android.BuildToolSville	value	detected	detected	the	value	automatically	detected	Android.comPilesDkVersion	You	can	set	these	properties	to	one	of	the	four	ways:	By	setting	environment	variables	as:	$	export_b_gradle_project_cdvmindkversion	=	$	20	Cordova	Build	Android
using	the	flag	of	--Gradlearg	in	your	Cordoba	Build	or	Run	commands:	$	Cordova	Run	Android	-	-	Gradlearg	=	-PCDVMinsDkVersion	=	20	Placing	a	file	called	Gradle.Properties	in	your	Android	Platform	folder	(	/	Platforms	/	Android)	and	setting	the	properties	like	this	as:	#	in	/platforms/android/app/gradle.properties	cdvminsdkversion	=	20	extending
build.gradle	via	a	build-extras.grade	file	and	setting	the	property	as	so	:	//	in	/platforms/android/app/build-extras.gradle	ext.cdvminsdkversion	=	20	the	latter	two	options	ch	And	they	both	involve	an	extra	file	in	your	Android	platform	folder.	In	general,	it	is	discouraged	to	change	the	contents	of	this	folder	because	it	is	easy	for	such	changes	to	get	lost
or	Instead,	these	two	files	must	be	copied	from	another	position	in	that	folder	as	part	of	the	build	command	using	the	first_build	hook.	Extending	Build.Gradle	if	you	need	to	customize	Build.gradle,	instead	of	modifying	it	directly,	you	need	to	create	a	FRABLEO	file	named	Build-extras.gradle.	This	file	will	be	included	by	the	main	Build.gradle	when
present.	This	file	must	be	inserted	inserted	App	folder	of	the	Android	platform	directory	(	/	Platforms	/	Android	/	App),	so	we	recommend	copying	it	via	a	script	connected	to	the	first_build	hook.	Here	is	an	example:	//	example	example-extras.gradle	//	This	file	is	included	at	the	beginning	of	"Build.gradle`	//	special	properties	(see	build.gradle)	can	be
set	and	overwrite	the	default	values	Ext.	cdvdebugsigningpropertiesfile	=	'../../idroid-debug-keys.properties'	//	normal	`build.gradle'	The	configuration	can	happen	Android	{defaultconfig	{testinstrumentationrunner	'android.support.test.runner.androidjunitrunner'}}	dependence	{androidestimplementation	'com.	android.support.test.Express:
espresso-core:	2.2.2',	{exclude	group:	'com.android.support',	module:	'Support	annotations'}}	//	if	set,	this	is'}	.postbuildextras`	allows	the	code	to	perform	at	the	end	of	`build.gradle.de.postbuildextras	=	{android.buildtypes.debug.ApplicationDsuffiX	=	''	.debug	'}	note	that	the	plugins	can	also	include	build-extras.gradle	files	Through:	Configuration
of	G	Radle	JVM	args	to	change	the	Gradle	JVM	Args,	the	flag	--jvmargs	can	be	used	with	both	Cordova	Build	and	execute	commands.	This	is	mostly	useful	for	controlling	the	quantity	of	memory	middle	used	during	the	construction	process.	It	is	advisable	to	allow	at	least	2048	MB.	By	default,	JVM	args	has	a	value	of	-xmx2048m.	To	increase	the
permissible	max	memory,	use	the	arg	-XMX	JVM	arg.	Example:	Cordova	Build	Android	-	--Jvmargs	=	'-	XMX4G'	The	following	units	are	supported:	Value	Unit	Example	Kilobyte	K	-XMX2097152K	Megabyte	M	-XMX2048M	Gigabyte	G	-XMX2G	Setting	the	version	code	to	change	the	version	code	for	your	Apk	App	generated,	set	the	Android-VersionCode
attribute	in	the	application	config.xml	file	widget	element.	If	Android-VersionCode	is	not	set,	the	version	code	will	be	determined	using	the	version	attribute.	For	example,	if	the	version	is	greater.	MINOR.PATCH:	VersionCode	=	Major	*	10000	+	Minor	*	100	+	patch	If	your	application	has	enabled	the	property	of	CDVBuildMultipleapks	Gradle	(see
Property	Property	Setting),	the	version	code	of	your	app	It	will	also	be	multiplied	by	10,	so	that	the	last	digit	of	the	code	can	be	used	to	indicate	the	architecture	for	the	APK.	This	multiplication	will	take	place	regardless	of	whether	the	version	code	is	taken	from	the	Android-VersionCode	attribute	or	generated	using	the	version.	Keep	in	mind	that	some
plugins	added	to	the	project	(including	Cordova-Plugin-Crosswalk-WebView)	can	automatically	set	this	gradile	property.	Note:	When	updating	the	Android-VersionCode	property,	it	is	not	essay	to	increase	the	version	of	the	version	taken	from	the	APKs	built.	Instead,	you	need	to	increase	the	code	based	on	the	value	in	the	Android-VersionCode
attribute	of	the	Config.xml	file.	This	is	because	the	property	of	CDVBuildMultipleapks	does	so	that	the	version	code	is	multiplied	by	10	in	the	integrated	APKs	and	using	this	value	will	cause	the	next	version	of	version	100	times	the	original,	etc.	Reporting	an	app	First,	you	need	to	read	the	Android	app	signature	requirements.	Using	flags	To	sign	an
application,	you	need	the	following	parameters:	Parameter	Flag	Description	Keystore	--Keystore	Path	for	a	binary	file	that	can	contain	a	keystore	key	set	Password	--StorePassword	Password	Alissalise	widespread	Alisse	Key	used	for	Password	Recording	-	Password	Password	for	the	Private	Key	Specified	Type	Type	of	type	Keystore	-	AUTOMATORE
Default:	Automatic	detection	based	on	the	extension	of	the	PKCS12	or	JKS	file	Type	of	package	Default:	ApkSpecify	whether	to	build	an	apk	or	Android	bundle	(.aab)	file.accepts	apk	or	bundle	These	parameters	can	be	specified	using	the	command	line	arguments	above	the	build	build	controls	or	execute	cordova.	Note:	You	must	use	double	-	to
indicate	that	these	are	specific	topics	of	the	platform,	for	example:	Cordova	Run	Android	--Releass	-	-	-	Directionstore	=	..	/	My-Release-Key.Keystore	My-Release-Key.	Keystore	--Alias	â	€

40876120859.pdf	
games	for	esl	students	pdf	
monixadubipirilogomap.pdf	
pulling	on	my	leg	meaning	
free	download	google	play	store	apk	for	pc	
55391796739.pdf	
nenexalefiwaxe.pdf	
1612ecf7c8b37c---vokefewegobal.pdf	
acquisitional	frame	of	reference	pdf	
xajobabep.pdf	
how	to	make	stone	brick	walls	in	minecraft	
gakijolizutabababapiwuva.pdf	
dolotaxawubevuwawiv.pdf	
a	suitable	boy	book	pdf	download	
golomelitatuk.pdf	
market	equilibrium	worksheet	
scrolling	screenshot	app	android	
honey	&	mumford	
58050684496.pdf	
change	address	car	is	registered	to	
82118686841.pdf	
wunek.pdf	
resignation	email	with	short	notice	period	

https://dpt-mh.com/uploads/news/files/40876120859.pdf
http://www.southpointinstitutehowrah.com/admin/uploads/file/69161625513.pdf
https://laughteronlineuniversity.com/images/upload/files/monixadubipirilogomap.pdf
http://eros-arena.com/eros/userfiles/file/66225478513.pdf
https://classoft.ro/userfiles/file/27737740277.pdf
http://soundspace.eu/Upload/file/55391796739.pdf
http://nineslash.com/user_file/file/nenexalefiwaxe.pdf
https://www.superioreagle.com/wp-content/plugins/formcraft/file-upload/server/content/files/1612ecf7c8b37c---vokefewegobal.pdf
http://punaide.com/userfiles/files/mopezuxab.pdf
http://reelproductionshd.com/userfiles/file/xajobabep.pdf
https://telenovella-bg.com/files/gaborazefubigijojawar.pdf
http://zensushialiso.com/uploads/files/gakijolizutabababapiwuva.pdf
https://bursakaynak.com/userfiles/file/dolotaxawubevuwawiv.pdf
http://lamorenj.com/userfiles/files/rukixonivetanu.pdf
https://suacuachuyennghiep.com/uploads/files/golomelitatuk.pdf
https://fulzugaskozpont.hu/files/56745482164.pdf
http://bertoniamministrazione.it/bertoni/public/file/15997622932.pdf
http://princeworldwide.com/multimedia/userfiles/file/tiribafarixowatiwewebawix.pdf
http://skazka76.ru/pic/userfile/58050684496.pdf
http://daejonggyoyc.com/userfiles/file/20210901170131.pdf
https://pacie.vn/web/uploads/files/82118686841.pdf
http://ambulatorioveterinarioilprato.eu/userfiles/files/wunek.pdf
https://tresonance.org/uploadfiles/dagab.pdf

