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Recently	I	worked	with	excellent	Theory	a	free	book	category	Bartosz	MilewskiÃ	¢	s	for	Programbers.Ã	¢	The	book	is	available	online	here	and	here.	I	had	an	incredible	moment	to	read	the	book	and	learn	to	know	theory	category	so	I	thought	IA	D	publishes	solutions	to	the	problems	of	the	online	book	to	make	it	easier	for	other	people	to	have	such
experience.	You	can	find	my	solutions:	Section	1	Def	solution	Identity	(X):	Return	X	P1.2	Implement	the	composition	function	in	your	favorite	language.	Requires	two	functions	such	as	topics	and	returns	a	function	that	is	their	composition.	Solution	Def	Composition	(F1,	F2):	Return	Lambda	X:	F2	(F1	(X))	P1.3	Write	a	program	looking	for	tests	that
your	composition	aspects	identity	function.	Assert	Solution	Composition	(Lambda	X:	X	+	4,	Identity)	(5)	==	9	Assert	Composition	(Identity,	Lambda	X:	X	+	4)	(5)	==	9	P1.4	Solution	The	World	Wide	Web	is	really	A	category,	if	we	consider	objects	from	web	pages	and	exists	a	¢	arrowÃ	¢	between	AE	B	if	there	is	a	way	to	get	to	B	from	clicking	on	the
link	P1.5	is	a	category,	with	people	like	Objects	and	friendships	like	Morphisms?	NO	SOLUTION,	Because	only	because	A	->	B	and	B	->	C	does	not	implicate	to	->	C	P1.6	when	is	a	graph	oriented	a	category?	Whenever	a	solution	each	node	has	a	border	that	points	to	it	and	for	every	two	nodes	a,	b	such	that	there	is	a	path	from	A	to	B,	there	is	also	a
connection	board	to	a	B.	Section	2	Solution	Def	Memoize	(F	):	call	=	{}	def	memoized	(x):	if	x	not	in	calls:	calls	[x]	=	f	(x)	return	calls	[x]	Return	memoized	test	p2.2	to	memoize	a	function	from	the	standard	library	that	you	can	It	normally	uses	to	produce	random	numbers.	It	works?	Solution	This	will	not	operate	P2.3	Most	random	number	generators
can	be	initialized	with	a	seed.	Implement	a	function	that	takes	a	seed,	call	the	random	number	generator	with	that	seed,	and	returns	the	result.	Memoize	this	function.	It	works?	DEF	solution	seed_to_random	(seed):	np.random.seed	(seed)	np.random.random	Return	()	=	memoized_random	memoize	(seed_to_random)	assert	np.isclose
(memoized_random	(0),	memoized_random	(0))	assert	memoized_random	(0)!	=	memoized_random	(1)	p2.3	Which	of	these	C	++	functions	pure?	Try	to	memoize	them	and	observe	what	happens	when	it's	called	them	several	times:	memoized	and	not.	A:	factorial	function	from	the	example	in	the	text.	Factor	solution	is	a	pure	function	B:	STD	::	Getchar
()	Getchar	solution	is	not	a	pure	function,	given	that	it	is	based	on	Stdin	C:	"Hello"	BOOL	F	()	{STD	::	COUT	BOOL	OPPOSTED	TRUEORFALSE	=	NON	TRUEORFALSE	ALWAYSTRUE	::	BOOL	->	BOOL	ALWAYSTRUE	_	=	TRUE	ALWAYSFALSE	::	BOOL	->	BOOL	ALWAYSFALSE	_	=	FALSE	SECTION	3	A	With	a	node	and	free	of	edge	solution	Add	an
Identity	arrow.	A	chart	with	a	node	and	one	(direct)	edge	(Tip:	This	edge	can	be	composed	with	a	sÃ	©)	Solution	Add	infinite	arrows	to	represent	each	number	of	direct	edge	applications.	A	chart	with	two	knots	and	a	single	arrow	between	their	solution	arrows	add	identity.	A	graph	with	a	single	knot	and	26	arrows	marked	with	the	letters	of	the
alphabet:	A,	B,	C	Ã	¢	|	z.	Solution	Add	an	identity	arrow,	and	then	add	endless	arrows,	one	for	each	A-Z	combination	of	any	length.	A	set	of	sets	with	the	inclusion	report:	A	is	included	B	If	each	element	of	A	is	also	an	element	of	B.	Solution	It	is	a	partial	order.	For	any	(A,	b)	is	at	most	one	a	->	B	and	if	a	->	B	and	b	->	then	a	and	b	have	the	same
elements	and	are	the	same	together.	Since	there	could	be	some	(a,	b)	in	which	an	intersect	b	is	This	is	not	a	total	of	C	++	type	order	with	the	following	relationship	of	sottotaling:	T1	T2	is	a	subtype	if	a	pointer	on	T1	can	be	passed	to	a	function	that	expects	a	pointer	to	T2	without	activating	a	compilation	error	.	Solution	This	is	a	partial	order.	For	any
(T1,	T2)	there	is	at	most	a	T1	->	T2,	and	if	T1	->	T2	and	T2	->	T1,	T1	and	T2	are	the	same	type.	There	are	types	that	are	not	connected	by	a	subdued	affair,	so	this	is	not	a	total	order.	*	Solution	and	Closed	output	and	is	Boolean	*	Identity:	the	identity	is	True	*	Associative:	easy	to	show	by	enumeration	or	*	closed:	the	output	of	either	is	boolean	*
Identity:	the	identity	*	association	is	false:	easy	to	show	P3.4	Enumeration	represents	the	BOOL	Monoid	with	the	operator	and	the	operator	as	category	lists	morphisms	and	their	rules	of	composition.	Solution	single	item	in	this	category	is	the	type	BOOL.	The	morphisms	are	real	and	(identity)	and	false.	The	composition	of	these	two	and	is	false.	P3.5
represents	added	Module	3	as	a	category	monigliata.	Solution	single	item	in	this	category	is	the	type	[int	=	0].	The	morphisms	are	*	A:	3N	ADD	(Identity)	*	B:	ADD	1	+	3N	*	C:	ADD	2	+	3N	The	morphisms	in	this	category	are	closed	in	association	because	©	b.	B	is	both	c	and	b.	C,	c.	B	is	a	section	4	SOLUTION	OPTIONAL	CLASS:	def	__init	__	(self,
value):	Value	=	Self._Value	DEF	IS_VALD	(SELF):	return	self._value	is	not	none	of	final	(car):	Assert	self.is_valid	()	Return	Self.	_Value	DEF	Compose	(F1,	F2):	DEF	Compound	(X):	F1OUT	=	F1	(x)	Returns	F2	(ftoout.get	())	if	ftoout.is_valid	()	Else	optional	(None)	Return	Def	Def	Identity	(X):	return	Optional	(x)	P4.2	Implement	embellished
Safe_reciprocal	function	that	returns	a	valid	reciprocal	of	its	argument,	if	it	is	non-zero.	Def	Safe_root	Solution	(x):	optional	return	(np.sqrt	(x))	if	x>	=	0	stretch	Optional	(none)	def	safe_reciprocal	(x):	optional	return	(1	/	float	(x))	if	x!	=	0	otherwise	optional	(None)	Assert	not	safe_root	(-1)	.is_valid	()	assert	np.isclose	(Safe_root	(4)	.get	(),	2.0)	Assert
not	safe_reciprocal	(0)	.is_valid	()	Assert	NP.ISCLUSIONI	(SAFE_RECIPROCAL	(4).	Get	(),	0.25)	P4.3	Compose	Safe_root	and	Safe_reciprocal	to	implement	Safe_root_reciprocal	that	calculates	SQRT	(1	/	X)	when	possible.	Solution	Safe_root_reciprocal	=	Compose	(Safe_reciprocal,	Safe_root)	Assert	not	safe_root_reciprocal	(0)	.is_valid	()	Assert	not
safe_root_reciprocal	(-5)	.is_valid	()	Assert	np.is_Valid	(Safe_root_reciprocal	(0.25).	Execute	(),	2)	Section	5	Solution	consider	Two	objects	terminals	a,	B.	There	is	exactly	one	morphism	M1	from	a	->	B	and	B's	since	©	terminal	and	exactly	one	morphism	m2	from	B	->	a	since	a	terminal.	So	M1.	M2	is	a	morphism	from	B	->	B	and	m2.	M1	is	a	morphism
from	A	->	B	is	©	A.	Since	the	terminal,	there	is	exactly	one	morphism	from	B	->	B,	then	M1.	m2	is	the	identity.	Therefore	M1,	M2	form	an	isomorphism	between	A	and	B.	©	Since	there	are	no	other	morphisms	between	A	and	B,	M1,	M2	is	a	unique	isomorphism.	P5.2	What	is	an	product	of	two	objects	in	a	Poset?	Tip:	Use	the	universal	construction.
Solution	The	product	of	two	objects	A,	B	in	a	Poset	C	is	the	object	that	is	less	than	both	A	and	B	(existing:	P:	C	->	A	and	Q:	C	->	b)	and	for	any	other	object	D	which	is	also	less	than	a	and	B,	there	is	D	->	C.	This	object	is	not	always	exists.	Sufficiency	Let's	say	that	we	have	an	A,	B,	C.	Now	consider	some	object	that	P2	D:	D	->	A,	Q2:	D	->	B.	Then	we
have	some	M:	D	->	C	so	P1.	M:	D	->	A	and	Q1.	M:	D	->	B.	Now	since	there	is	at	most	one	morphism	between	any	pair	of	objects	in	a	poset,	it	is	true	that	P2	=	P1.	m	and	q2	=	Q1.	m,	then	m	facrizis	p	and	q.	Necessity	if	there	were	some	objects	D	such	that	D	->	A,	D	->	B	but	not	d	->	c,	so	there	is	morphism	m	such	that	P1	=	P2.	M	Since	M	must	be	a
morphism	from	D	->	C.	Therefore	c	is	not	the	product	of	a	and	b.	P5.3	What	cos'Ã¨	a	two	coproduct	in	a	poset?	Solution	We	have	just	reversing	the	arrows	in	P5.2.	The	coproduct	of	two	objects	A,	B	in	a	poset	is	the	object	C	which	is	greater	than	both	A	and	B	(ie.	(Ie.	P:	A	->	C	and	Q:	B	->	c)	and	for	any	other	object	D	that	is	also	greater	than	A	and	B,
there	is	C	->	D.	This	object	is	not	always	exists.	P5.4	Implement	the	equivalent	of	Haskell	both	as	a	generic	type	in	your	favorite	language	(other	than	Haskell).	EITHERABTRACT	solution	class	(object):	Passage	of	class	Righteither	(eitherabstract):	DEF	__init	__	(self,	right):	self.right	=	right	class	LeftEther	(eitherabstract):	Def	__init	__	(self,	left):
self.left	=	Left	#	Do	something	similar	this	in	Python	is	a	recipe	for	disaster	:)	Def	either_factory	(left_type,	right_type):	def	generate	(left	=	none,	right	=	none):	assert	((left	is	none)	^	(a	right	is	none)),	if	left	is	not	none:	assert	isinstance	(left,	left_type)	out	=	leftither	(=	left	left)	if	it	is	not	none:	assert	isinstance	(right,	right_type)	out	=	righteither	(
Right	=	Right)	Return	out	of	return	generate	my_left	=	either_factory	(int,	str)	(left	=	5)	assert	my_left.left	==	5	my_right	=	either_factory	(int,	str)	(right	=	"5")	assert	(my_right.right	=	=	"5")	Searches:	either_factory	(int,	str)	()	print	("failed")	with	exception	assertionerror:	pass	Visit:	either_factory	(int,	str)	(left	=	5,	right	=	"5")	Print	("failed")	with
exception	of	AsserretError:	Passage	P5.5	View	that	or	is	a	Ã	¢	Int	co-co-cover	equipped	with	two	injections:	INT	I	(INT	N)	{RETURN	N;	}	INT	J	(BOOL	B)	{RETURN	B?	0:	1;	}	Tip:	Define	an	INT	M	(or	CONST	&	E)	function;	What	Factorizes	I	and	J.	Solution	#	consider	the	following	injections	from	INT	and	BOOL	IN	INT	DEF	INT_TO_INT
(INT_PARAM):	ASSERT	ISINSTANCE	(INT_PARAM,	INT)	Returns	INT_PARAM	DEF	BOOL_TO_INT	(BOOL_PARAM):	ASSERT	ISINSTANCE	(BOOL_PARAM,	BOOL)	Return	1	if	Bool_Param	otherwise	0	#	we	can	define	the	Next	Morphism	from	Both	in	Int	Def	eithera_to_int	(either_param):	isinstance	(either_param,	eitherabstract)	SE
EITHER_PARAM.KIND	==	"LEFT":	OUT	=	INT_TO_INT	(ETHER_PARAM.LEFT)	ELIF	EITHER_PARAM.KIND	==	"RIGHT":	OUT	=	BOOL_TO_INT	(	either_param.right)	return	out	""	"then	bool_to_int	(x)	=	either_to_int	(either_factory	(int,	bool)	(left	=	x))	int_to_int	(y)	=	either_to_int	(either_factory	(int,	bool)	(right	=	y))	so	EITHER_TO_INT
FACTORIZES	BOOL_TO_INT	AND	INT_TO_INT	""	"ASSERT	EITER_TO_INT	(EITHER_FACTORY	(INT,	BOOL)	(LEFT	=	5))	==	INT_TO_INT	(5)	ASSERT	EITHER_TO_INT	(EITHER_FACTORY	(INT,	BOOL)	(RIGHT	=	TRUE))	==	BOOL_TO_INT	(TRUE)	ASSERT	EITHER_TO_INT	(EITHER_FACTORY	(INT,	BOOL)	(=	des	Between	false))	==	bool_to_int
(false)	p5.6	Continuing	the	previous	ROblem:	How	to	claim	that	Int	with	the	two	injections	I	and	J	can't	be	a	trib	to	both?	Solution	Say	There	is	some	impossible_m	function	such	that	either_factory	(int,	bool)	(left	=	x)	=	impossible_m	(int_to_int	(x))	either_factory	(int,	bool)	(right	=	y)	=	impossible_m	(bool_to_int	(y))	for	all	int	x	and	y	bool.	Then	it	must
be	the	case	that:	impossible_m	(1)	=	leftither	(left	=	1)	impossible_m	(1)	=	righteither	(right	=	1)	which	is	not	possible,	since	the	output	of	a	function	for	a	given	entry	topic	must	be	Unique.	P5.7	Still	continuing:	what	about	these	injections?	Int	(int	n)	{if	(n	SupereEther;	boolbool	x	=	boolbooltuple	(x,	x)	then	we	can	define	more	morphisms	from
Supereither	in	or	this	or	the	first	or	second	element.	Section	6	Solution	We	can	define	the	following	two	functions,	which	serve	as	MAYBETOEHEASHER	reversers	::	Perhaps	a	->	O	()	a	MaybetoEether	inputmaybe	=	Inputmaybe	case	of	only	to	->	to	the	right	one	nothing	->	Left	()	Eitomaybe	::	o	()	A	->	Perhaps	an	eithromaybe	Inpute	Other	NÃ	©	Ther
=	Inputative	case	on	the	right	A	->	Only	left	()	->	Nothing	P6.2	Here	"Sa	Sum	Type	defined	in	Haskell:	Form	Data	=	Float	|	Float	Redd	Float	When	we	want	Define	a	function	as	the	area	that	acts	on	a	form,	we	do	the	model	correspondence	on	the	two	manufacturers:	Area	::	Form	->	Floating	area	(rim	R)	=	PI	*	R	*	R	Area	(RECT	DH)	=	D	*	H	Tool	form
in	C	++	or	Java	as	an	interface	and	creates	two	classes:	circle	and	rect.	Area	implement	as	a	virtual	function.	Solution	#	User	again	Python,	only	for	the	funny	class	Abstractshape	(Object):	Def	Area	(SELF):	Assert	NotimpleDereerRor	()	DEC	CIRC	(SELF):	ASSERT	NOTIMPLEATERRORROR	()	Class	Circle	(Abstracts	HAPE):	DEF	__IT	__	(SÃ	©,	radius):
self.radius	=	RADIUS	DEF	area	(car):	return	self.radius	**	2	*	np.pi	def	circle	(car):	return	2	*	self.radius	*	np.	PI	Class	RECT	(ABSTRACTSHAPE):	DEF	__Init	__	(SÃ	©,	height,	width):	self.height	=	height	self.width	=	width	area	DEF	(SELF):	RETURN	SELF.HEIGHT	*	SELF.WIDTH	DECG	(SELF):	RETURN	2	*	self-height	+	2	*	self-width	redd	=	rect	(3,
5)	assert	redd.circ	()	==	16	assert	redd.Area	()	==	15	p6.3	Continue	with	the	previous	example:	we	can	easily	add	A	new	function	function	that	calculates	the	circumference	of	a	form.	We	can	do	it	without	touching	the	definition	of	the	form:	circ	::	shape	->	circum	float	(rim	r)	=	2.0	*	pi	*	r	circia	(ret	dh)	=	2.0	*	(d	+	h)	Add	circia	all	your	c	++	or	java
implementation	.	What	parts	of	the	original	code	did	you	have	to	touch?	Solution	see	above.	We	had	to	add	it	to	each	class,	including	Abstractshape.	Haskell	solution	We	must	update	the	shape	definition	and	add	another	line	to	circal	and	area	implementations.	For	Python	we	needed	to	write	a	new	class	with	a	new	initializer,	inheriting	from	Return
Haskell:	data	form	=	floating	circle	|	Float	float	recto	|	Floating	Square	Area	::	Form	->	Floating	Area	(Circle	R)	=	PI	*	R	*	R	Area	(Rectal	DH)	=	D	*	H	Area	(SQUARE	H)	=	H	*	H	CIRCING	::	Form	->	Float	CIRC	(CIRCLE	R)	=	2.0	*	PI	*	R	CIRC	(RET	DH)	=	2.0	*	(D	+	H)	CIRC	(SQUARE	H)	=	4.0	*	H	Python:	Class	Square	(RT):	Def	__init	__	(SELF,
length):	self.height	=	length	yourself	.width	=	Square	length	=	Square	(5)	Assert	Square.circ	()	==	20	Assert	Square.	Area	()	==	25	Solution	A	+	Equivalent	to	AA	and	2	*	A	Equivalent	to	(BOOL,	A).	We	can	define	the	following	invertible	functions	between	them.	APLUSATOTWOTIESA	::	O	AA	->	(BOOL,	A)	APLUSATOTWOTISIS	ECHEO	=	CASE
BONDED	OF	LEFT	A	->	(TRUE,	A)	RIGHT	A	->	(False,	a)	Twotesatoaplusa	::	(BOOL,	A)	->	AA	twessisataplusa	Twotisima	=	Case	twotimesa	di	(true,	a)	->	left	a	(false,	a)	->	right	a	section	7:	function	solution	no,	this	mapping	of	morphisms	does	not	retain	identity.	For	some	only	A,	let's	see	that:	(FMAP	ID)	only	A	=	Nothing	ID	Just	A	=	Just	A	P7.2	Tests
the	laws	of	the	functionist	for	the	reader's	player.	Tip:	It's	really	simple.	Solution	We	must	use	the	equivalent	reasoning	to	demonstrate	that	FMAP	maintains	the	identity	and	preserves	the	ID	ID	ID	ID	composition	(A->	b)	=	(.)	ID	(A->	b)	=	ID	(A->	b)	FMAP	composition	(	(C->	d).	(B->	c))	(A->	b)	=	(C->	D).	(B->	c).	(A->	b)	=	(C->	D).	FMAP	((B->	C)	(A-
>	b))	=	FMAP	(C->	D)	(FMAP	(B->	C)	(A->	b))	P7.3	Implement	the	player's	function	in	the	second	preferred	language	(The	first	is	Haskell,	of	course).	Solution	DEF	READER_FUNTR_FMAP	(F,	R_TO_A):	Return	Lambda	R:	F	(R_TO_A	(R))	DEF	(R):	RETURN	0	DEF	R_TO_1	(R):	RETURN	1	R_TO_5	=	READER_FUNTOR_FMAP	(Lambda	X:	X	+	5,	R_TO_0)
Assert	("R")	==	0	ASSERT	R_TO_1	("R")	==	1	ASSERT	R_TO_5	("R")	==	5	P7.4	Demonstrate	the	laws	of	the	leads	for	the	list	player.	Suppose	the	laws	are	true	for	the	part	of	the	list	of	the	list	you	are	applying	it	(in	other	words,	use	induction).	FMAP	FMAP	IDENTITITY	BASE	SOLUTION	SOLUTION	Nil	=	Nil	=	FMAP	Commposition	ID	(F.	G)	Nil	=	F
(Nil)	=	FMAP)	ENT)	ENTER	ID	(CONTRUE	ID	(CONTROUR	(FMAP)	)	=	Contro	(ID)	(ID)	=	AD	(XT)	ID	(F.	G)	Composition	(F.	G)	(F.	V.	G)	x)	(F.	G)	(f.	G)	)	t)	//	definition	of	fmap	((f.	g)	((fmap	f.	FMAP	f)	//	=	FMAP	F	(ADDRO	(FMAP)	(FMAP)	//	FMAP	definition	=	Fmap	f	(fmap	(counter	(fmap)	//	definition	(ft)	section	8	(f	fmap	fmap	g.):	FUNCTORALITY
SENDING	TO	MEAN	AFTERNET,	HOME	THE	FMAP	INTO	i	read	Ã¨o:	FMAP	F	fari	(a),	(c),	(c)	identbian	italie	c	=	peers	the	f	*	g	composition	f	*	g	look	like	F	*	g	(a)	C	=	fins	fins	fmap	f	*	f	*	f	fmap	fmp	=	app	pairs	ab	=	AB	PairbimaP	::	(a	->	C)	->	d	)	->	Para	Ab	->	Cats	ParairBapapapap	->	Cedb	Franquable	ParairBarap	(g	Bis)	(hb)	Pai	RFIRST	::	(a	->
C)	->	CB	SAIRF	AP)	=	Corsain	(ga)	B	PaairSCON	::	B	PAIRSCON	::>	couple	Pairsecond	pairing	pairsecond	f	(couple	ab)	=	pair	of	(fb)	the	test	that	these	definitions	be	compatible	with	the	default	implementations	each	time	you	can	be	applied.	PAIRBIMAP	(PAIRBIMAP	GAN)	(PARR)	(HB)	//	definition	of	Pairbimap	Pairbimap	(HB)	//	1	Pairfirst	(pairfirst
(pairfirst	(pairfirst	(pairfirst	(pairfirst	/	Definition	of	meek	pairnecond	cuchi	tale	tale	Paairbimap	Gh	=	pairfirst	pairsecond	h	proof	of	pairfirst	pairfirst	g	(pairs	(ga)	b	//	1	pairfirst	(g)	of	pairbimap	(g	id)	s	//	definition	of	pairbimap	that	means	that	Pairfirst	G	=	Pairbimap	Pairsecond	F	(PARSCOND	pair)	//	PainSeCond	look	((FB)	//	Definition	of	Pairbimap
(ID)	Pairbimap	Pair	//	1	Pairbimap	Il	mean	than	pairsecond	=	pairbimap	date	myidentity	a	=	myidstity	dates.	(Myidentity	a)	(myidentity	a)	(myidentity	a)	(myidentity):	(myidentity	a)	(Myconst	())	=	no	desugateDtomaybean	(myidentity	(myidentitygared.:>	Maybe.	(Myconst	()	Maybetodeded	()	Maybetodugred	()	May	a)	=	right	(myidentity	a)	we	showing
you	are	the	inverso	of	each	other	uses	using	equation	exquotion	modernized	desguedtomaybe	(left	()))).	maybeToDesugared	not	Hing	=	maybeToDesugared	Left	(MyConst	())	desugaredToMaybe	maybeToDesugared	Nothing	=	desugaredToMaybe	(Left	(MyConst	()))	=	nothing	maybeToDesugared	desugaredToMaybe	(right	(MyIdentity	a))	=
maybeToDesugared	re	=	Right	(MyIdentity	a)	desugaredToMaybe	maybeToDesugared	only	=	desugaredToMaybe	Right	(myidentity	a)	=	Only	a	p8.3	Let	it	will	arrange	another	data	structure.	Io	we	chament	a	prelist	perch-©	engaged	s	a	forerounding	of	a	list.	Esso	substitutes	the	recall	with	a	pair	of	Type	B:	Data	Pelist	to	B	=	nil	|	Counter	a	b.	If	you
are	recovering	our	previous	definition	of	a	listing	Applicant	Recursively	prelisting	to	you	(Wea	ll	see	how	it	is	made	of	fixed	points).	Showing	you	preelist	Ã,one	an	instance	of	bifunctor.	Consent	Solution	Formace	Formare	FMAPLOW	PHY	(A	->	(PLECIST	CD)	->	(PLECIST	CD)	FM	Nil	=	FG	AB	=	AB	=	AB	=	(F	BIS	)	(GB)	Diesno	Tenamo	B	(WLOG).
Then	the	fmap	for	an	ã	fmap	f	ot	a	fmap	fcru	c	=	counter	(fa)	c	of	(f'to)	c	f'.expse	(f'ho)	b	this	(fa)	and	functor	(f'er)	ft.	f	C	=	ADDROO.	g	=	nil	nil	fmap	f.	g	counter	a	group	c	=	count	f.	ga	c	=	f	fmap	count	g	=	fmap	f	(g	fmap	count	a	c)	P8.4	Destiny	Data	defaults	in	A	e	B:	K2	Cabs	=	K2	C	data	=	Fst	a	data	snd	ab	=	snd	b	solution	k2:	without	loss	of
generality,	if	we	consider	constant	b,	then	it	becomes	k2	const,	which	is	a	fst	fundor:	if	we	keep	a	constant,	then	it	becomes	fst	const,	which	is	a	one	If	we	keep	a	constant,	then	FST	becomes	identity,	which	is	a	SND	worktore:	if	we	keep	a	constant,	then	SND	becomes	identity,	which	is	a	funtor	if	we	keep	a	constant,	then	it	becomes	SND	CONST,
which	is	a	P8.5	subtore	Define	a	bifunctor	in	a	different	language	Haskell.	Implement	bimap	for	a	generic	couple	in	that	language.	Bifunctor	solution	class	(object):	DEF	apply_bimap	(SELF,	F,	G):	FALSE	ASSERTION	@ClassMethod	Def	first	(CLS,	F):	Return	Lambda	Couple:	pair.apply_bimap	(F,	Lambda	X:	X)	@ClassMethod	Def	second	(CLS	,	g):
return	lambda	couple:	pair.apply_bimap	(lambda	x:	x,	g)	@classmethod	def	bimap	(cls,	f,	g):	lambda	return	pair:	pair.apply_bimap	(f,	g)	equal	class	(bifunctor):	def	__init	__	(Self,	Aval,	BVAL):	self.aval	=	aval	self.bval	=	bval	def	apply_bimap	(self,	f,	g):	return	coupling	(f	(self.aval),	g	(self.bval))	p	=	pair	(5,	"4")	first_mapped	=	bifunctor.first	(lambda	x:	x
+	1)	(p)	assertion	first_mapped.aval	==	6	assertion	first_mapped.bval	==	"4"	second_mapped	=	bifunctor.second	(lambda	x:	x	+	"1")	(P)	Second_mapped.aval	assertion	==	5	Second_mapped.bval	assertion	==	"41"	Bimapped	=	Bifunctor.bimap	(Lambda	X:	X	+	1,	Lambda	S:	S	+	"1")	(P)	Bimapped	Assertion	.	AVAL	solution	STD	::	MAP	should	be
considered	a	PROFUNTOR	A	KEY	AND	T.	You	can	define	as	a	PROFUNTOR	as	follows:	Get	a	::	->	maybe	b	Example	Profontor	to	arrive	where	Dimap	FG	Get	=	LMA	P	f.	RMAP	G	LMAP	F	GET	=	X	->	GET	(FX)	RMAP	G	GET	=	X	->	FMAP	G	(x	Obtain)	SECTION	9:	Types	of	function	(no	challenges)	Solution	Nattrans	::	Maybe	a	->	[a]	Nattrans	(Enough	X)
=	[x]	Nattrans	Nothing	=	[]	The	condition	of	naturality	is	GF	A	|	I	±	a	=	i	Â	±	b	in	|	F	F,	which	translates	into	FMAP_LIST	f.	NATTRANS	=	NATTRANS.	FMAP_MAYBE	F	NO	CASE:	FMAP_LIST	f.	NATTRANS	NOTHING	=	F	FMAP_LIST	[]	=	[]	=	NATTRANS	NOTHING	=	NATTRANS.	FMAP_MAYBE	F	NOTHING	(JUST	X)	Case:	FMAP_LIST	f.	NATTRANS
(JUST	X)	=	FMAP_LIST	F	[X]	=	[F	(X)]	=	NATTRANS	(JUST	(F	x))	=	NATTRANS.	FMAP_MAYBE	F	(X	ONLY)	P10.2	Define	at	least	two	different	natural	transformations	between	reader	()	and	the	funtor	list.	How	many	different	lists	of	()	are	there?	NATTRANSRL1	::	((()	->	a)	->	[a]	nattransrl1	_	=	[]	nattransrl2	::	(()	->	a)	->	[a]	nattransrl2	g	=	[g	()]
nattransrl3	::	(()	->	a)	->	[a]	nattransrl3	g	=	fmap	g	[(),	()]	since	there	are	an	infinite	number	of	lists	of	[(),	...]	there	are	an	infinite	number	of	these	natural	transformations.	P10.3	Continue	the	previous	exercise,	with	BOOL	reader	and	maybe.	Solution	There	are	three	natural	transformations	from	Reader	Bool	->	Perhaps	Nattransrb1	::	(Bool	->	a)	->
maybe	a	nattransb1	_	=	Nothing	nattransrb2	::	(Bool	->	a)	->	maybe	a	nattransrb2	g	=	just	(g	true)	NATTRANSRB3	::	(BOOL	->	A)	->	Perhaps	a	nattransb3	g	=	just	(f	fake)	p10.4	Displays	that	the	horizontal	composition	satisfies	natural	transformation	the	naturality	condition	(Tip:	use	the	components).	ItÃ	¢	s	a	good	exercise	in	the	hunting	diagram.
Solution	that	we	have	the	F,	G	and	natural	transformations:	I	±	a	::	F	A	->	F'a	Ãžâ²a	::	G	A	->	G'a	must	show	that	(G	'F'.)	F.	(IÂ²	a	|	â	±)	a	=	(iâ²	Ã	¢	|	i	Â	±)	b.	(.	G	f)	f	(iâ²	Ã	¢	|	Ãž	Â	Â	±)	b.	(G.	f)	=	f	(Ãžâ²f'b.	Gi	Â	±	b).	G.	F	=	f	//	Definition	of	the	horizontal	Ãžâ²	"composition.	G.	F	'f.	Ãž	Â	±	a	=	//	g	Ãž	Â	±	b	::	g	(f	b)	->	g	(f'b)	(g	'f')	f.	(IÂ²	a	|	i	Â	Â	±)	a	=	//
Ãžâ²f'b	::	g	(f'a)	->	g	'(f'a)	p10.5	Write	a	short	essay	on	how	you	can	enjoy	writing	the	diagrams	Needs	evident	to	demonstrate	the	interchange	law.	Solution	if	it's	the	case	that:	f	-Ãžâ²	'->	f'	f	'-i	â	â	±'	->	f	''	g	-Ãžâ²->	g	'g'	-i	Â	Â	±	->	g	''	Therefore	for	the	definition	of	the	horizontal	ita	s	simple	to	see	that:	fg	-	(iâ²	'a	|	iÂ²)	->	f'g'	-	(i	â	±	'a	|	i	Â	Â	Â	Â)	->
f''g'	'fg	-	(IÂ²	'I	Â	±')	A	|	(IÂ²	I	Â	±)	->	F'G	''	Furthermore,	per	horizontal:	FG	-	(iâ²	'A	|	IÂ²)	->	F'G'	F'G	'.	-	(I	Â	±	'A	|	I	Â	Â	±)	->	F''g'	'FG	-	(IÂ²'	A	|	IÂ²).	(I	Â	±	'A	|	I	Â	Â	±)	->	F''g'	'(IÂ²'	A	|	IÂ²).	(Â	±	'at	|	i	Â	Â	±)	and	(iâ²'.	I	Â	±	')	A	|	(.	IÂ²	I	Â	±)	The	equivalent	effect	on	the	FG	P10.6	creates	a	couple	of	test	cases	for	the	opposite	condition	of	naturalization
of	transformations	between	different	op.	HereÃÃ	¢	s	a	choice:	op	::	op	bool	int	op	=	op	(x	->	X>	0)	and	F	::	::	->	Int	fx	=	reading	newtype	on	ra	=	op	(s	(s)	=	a	g	f.)	=	a	(s)	=	a	abra	-	b	-	to	a	f)	FX	-	Test	1	OP1	::	SO	Bool	int	(\	x	->	(X>))	F1:>	Int	F1	=	0	Els	0	OPOBOOGAR3	::	on	Bool	A	->	On	char	an	opketboard	(SO	ATBOLIC)	=	OP	(\	X	->	If	atbool_)
boolh_f_folchar_f_folchar_F_folchar_op1	=	control1	=	control	F1	(OPOBOOCOOPCAR	OP1)	TEST1A	=	(UNWRAP_OP1B_F_FROP1)	-	Test1B	.:	Test	1P2	=	OP	(\	x	-	displayed	x	)	F2	::	Int	->	Double	F2	x	=	Sqrt	(SQRGENCE	-Regral	(SAPTROGNEOPTA)	(SAPTROMING)	(SAPTROGER	int	string_contra	_f_op2	=	ststrringo	pInt	((contramap	f2)	OP2)	On
contra_f_stringint_op2	::	Int	Int	contra_f_stringint_op2	contramap	=	f2	(opStringToOpInt	OP2)	test2a	=	(unwrap_op	stringint_contra_f_op2	5)	==	(unwrap_op	contra_f_stringint_op2	5)	test2b	=	(unwrap_op	stringint_contra_f_op2	2)	==	(unwrap_op	contra_f_stringint_op2	2)	Section	11:	Programming	Decammation	(No	Challenges)	Solution	We	Stand
Liave	you	in	C	++	Types	Categories	With	Left	Morphysms.	For	LO	MA	SPAN	1	3	SMOB.	1	and	3,	and	3-doth	of	the	apex,	the	apex,	the	apex	of	4	such	->	4	c	Ã	->	the	initial	object.	Solution	the	identity	devramms,	comprehensive	of	each	of	the	scheme	apex	must	morphish	to	each	alster,	and	the	limit	objects	must	have	an	erectional	overseas	used,	which
each	alture.	Putanto	the	limit	must	be	initial	object.	Solution	La	Pushout	The	Due	Set	(Large	Set	(Large	Set	in	being	Contents	Better)	And	The	Classes	Of	These	Applicants	(Needs	Peak	Peak	Sharps	You	Only	Way).	The	initial	objective	object	and	the	EMPINAL	OLD	Ã	¢	â¬	â¬	Ã	â,¬	Ã	â,¬	IPLET	EACH	â,¬	P12.4	CANNOT	INTORE	YOU	WHAT	A	GOING
A	GOING	HEARQUALIZER?	Solution	the	coequalizer	an	equalizer	in	front	category.	Dot	some	2	morphisms	f:	b	-	b	->	A	e	g	from,	Id	Corsican	heighter	C	E	associated	mornings	p:	C	have	such	p.	f	=	p.	G.	CIOYS¨,	for	any	other	c	'with	Morphism	C.	Exist	some	Such	I	Such	P'	=	p.	did	you.	The	Proposito	of	Set,	The	Coequalizer	Defines	a	transformation	of
the	f	and	ga	â	€	¢	s	copyains	that	makes	them	equal	between	loro.	P12.5	showing	you,	in	a	Category	with	a	Terminal	item,	a	pullback	versus	Ã	сроде	Ãу	a	produced.	Solution	considers	a	diagram	format	achievota-three	-foot	1	-f->>>	t	INT	Next	X	=	X	Reverse	Length	::	int	->	Inverse	List	X	=	Replicate	X	[()]	Section	14:	Representable	Windows	solution
when	we	apply	the	C	(A,	-)	subtore	for	some	Function	F,	we	obtain	a	function	that	commands	the	C	(A,	F)	H	=	f.	H	on	every	Morphism	H:	A	->	X	in	the	Homset	Hom	(A,	X).	If	f:	x	->	x	is	morphism	identity,	f.	H	=	H,	then	C	(A,	F)	H	=	H,	and	C	(A,	F)	represents	the	identity	morphism.	P14.2	show	that	maybe	it	is	not	representable.	Solution	If	maybe	it
may	be	representable,	then	we	would	be	able	to	implement	a	function	of	beta	::	Maybe	X	->	(A	->	X).	However,	it	is	not	possible	to	implement	a	function	that	accepts	anyone	and	return	a	->	X	for	any	type	arbitrary.	P14.3	Is	the	representable	leador	reader?	SOLUTION	Yes,	the	Reader	opera	is	the	homefunitor	on	types	of	Haskell	and	is	isomorph.
P14.4	Using	the	stream	representation,	memoize	a	function	that	squares	its	topic.	FLOW	DATA	SOLUTION	X	=	AGAINST	X	(STREAM	X)	Instance	Representable	Flow	where	REP	type	flow	=	int	tabulate	f	=	against	(f	0)	(tabulate	(f.	(1)))	index	(compared	b	bs)	n	=	if	n	=	=	=	0	then	bb	index	other	(n	-	1)	squarearg	::	int	->	int	scarearg	x	=	x	*	x
memoizedsquares	::	brook	int	memoizedsquares	=	squarearg	tabulate	zerothsquare	::	int	zerothsquare	=	memoizedsquares	index	0	=	zerothsquaretrue	zerothsquare	==	0	thirdsquare	::	INT	THIRDSQUARE	=	MEMOIZEDSQUARES	INDEX	3	THIRDSQUARETRUE	=	THIRDSQUARE	==	9	FIFTHSQUARE	::	INT	FIFTHSQUARE	=	MEMOIZEDSQUARES
INDEX	5	FIFTHSQUARETRUE	=	FIFTHSQUARE	==	25	P14.5	Check	that	tabulate	and	the	index	for	Stream	are	in	fact	the	reverse	of	each	other.	(Tip:.	The	use	of	induction)	Solution	We	want	to	demonstrate	that	for	each	N,	tabulate	index	fn	=	fn	index	case	base	(tabulate	f)	=	0	//	definition	of	tabular	index	(cons	(f	0)	(tabulate	(f	(+	.	1))))	=	0	//
Definition	of	index	0	F	Inductive	index	phase	(tabulate	f)	n	=	//	definition	of	the	tabular	index	(v)	(f	0)	(tabulate	(f.	(1))))	=	n	/	(.	Tabulate	(F	(+1)))	/	Definition	of	the	index	index	(N	-	1)	=	//	inductive	recruitment	f.	(+1).	(N	-	1)	=	FN	Section	15:	The	Yoneda	Lemma	Phi	::	(Forall	X	(A	->	X)	->	F	x.)	->	F	to	Phi	Alpha	=	Alfa	ID	PSI	::	F	A	->	(Forall	X	.	(A	->
x)	->	f	x)	psi	fa	h	=	fmap	h	does	solution	note	psi	can	be	written	as	psi	fa	=	h	->	fmap	h	goes	ahead	(phi	psi)	fa	=	phi	(h	-.>	Fmap	h	bis)	=	(h	->	fmap	h	bis)	id	=	fmap	ID	fa	=	do	backward	(psi	phi)	alpha	=	psi	(alpha	id)	=	h	-.>	Fmap	h	(alpha	id)	=	h	->	(alpha	h	id)	=	h	->	alpha	h	=	alpha	p15.2	a	discreet	category	is	one	that	has	objects	but	do	not	miss
different	identity	morphisms.	How	does	the	Yoneda	Lemma	for	windors	from	that	category?	Solution	Any	Homfunctor	C	(A,	-)	from	the	Discrete	Map	category	to	the	Singleton	set	and	all	other	objects	for	the	empty	set.	For	each	fundor	f	from	Discrete	sets,	there	are	N	Morphisms	(ITEM-selection	morphisms)	between	the	Singlet	and	F	A	set,	where	n	is
the	number	of	elements	of	f	a.	Since	It	is	a	morphism	from	the	empty	set	together	together,	each	of	these	n	Morphisms	from	Singlets	to	F	to	indicate	a	unique	natural	transformation	from	C	(A,	-)	to	F,	for	which	there	is	a	biunivocal	correspondence	between	these	natural	transformations	and	elements	of	f	a.	Solution	to	Yoneda	Lemma,	natural
transformations	from	C	(A,	-)	(in	this	case	()	->	x)	to	f	(in	this	case	list	x)	are	one-a-one	with	the	elements	of	a	f.	then	the	type	data	D	(()	->	X)	->	X	list	is	another	list	representation	().	ItÃ	¢	s	fairly	easy	to	understand	why	this	is	the	case	-	a	function	of	the	form	f:	()	->	x	is	essentially	a	container	for	a	single	value	of	x.	Then	the	D	elements	are	all	of	the
form:	D1	=	f	[f	()]	d2	=	f	[f	(),	f	()]	...	section	16:	yoneda	embedding	solution	ahead	::	(a	->	b)	->	((X	->	a)	->	(x	->	b))	forward	atob	=	f	->	atob.	F	backwards	::	((x	->	a)	->	(x	->	b))	->	(a	->	b)	backwards	xtoatoxtob	=	->	(xtoatoxtob	id)	a	solution	in	the	single	view	element	category	Of	monoid,	we	have	only	one	element	and	morphisms	follow	the	monoidal
association	rules.	We	will	call	this	category	M.	The	Yoneda	Embedding	map	the	only	object	of	one	at	the	M	(A,	-),	which	is	the	subtore	in	[M,	Set]	that	associates	the	single	element	of	one	at	set	M	(A,	A)	.	The	Yoneda	embedding	map	every	morphism	in	M	â	€	a.	Then	Ãž	Â	±	a	*	ff	=	gf	*	Ãž	Â	Â	Â	Â	Â	±	a.	Section	18:	Added	to	->	C	(L	A,	B)	A	->	D	(A,	R
B)	Solution	to	say	that	we	have	F	::	A1	-	>	A2	FF	â	€	D	(A2,	R	B)	If	L	E	R	are	L	::	D	(A,	R	B)	->	C	(L	A,	B)	R	::	C	(L	A,	B)	->	D	(A,	R	B)	and	define	the	natural	transformation	I:	G	-	>	F	such	that	G1	::	D	(A1,	R	B)	->	C	(L	A1,	b)	I	G2	::	D	(A2,	R	B)	->	C	(L	A2,	b)	Now	Consider	the	G1	Morphisms:	A1	->	R	and	G2:	A2	->	R	b.	We	want	to	demonstrate	that	F	F	*
I	G2	G2	=	I	*	GFI	G2	*	G	F	G	A1	=	//	Definition	of	F	I	G2	*	G	=	A2	//	Definition	of	GI	G2	*	D	(A2,	R	B)	=	//	Definition	of	I	G2	C	(L	A2,	b)	=	//	Definition	of	GF	A2	=	//	Definition	of	FF	F	*	F	A1	=	//	by	f	f	f	*	i	g1	g	a1	//	definition	of	p18.2	g1	derive	the	council	Ãžî¼	starting	from	hom-sets	hom-set	in	the	second	definition	of	the	addition.	The	solution	we
assume	that	c	(ld,	c)	Ã	¢	Ã	¢	...	d	(d,	rc)	holds	for	any	c	in	c	and	d	in	D.	We	want	to	show	that	there	is	a	natural	transformation	"::	l.	R	->	IC.	It	gives	¬	d	=	rc,	then	c	((l.	R)	c,	c)	Ã	¢	Ã	¢	...	d	(rc,	rc).	since	©	d	(RC,	RC)	contains	at	least	the	identity,	our	natural	transformation	from	D	(RC,	RC)	->	C	((L.	r)	c,	ic)	must	be	mapped	to	a	non-empty	set.
Therefore,	we	have	a	certain	set	of	morphisms	that	mappellono	from	(l.	R)	c	->	I	c	to	any	c.	These	morphisms	form	a	natural	transformation	from	L	*	R	->	IC,	which	is	Ã	Î¼.	P18.3	Complete	test	of	equivalence	of	the	two	definitions	of	the	addition.	Solution	to	demonstrate	that	the	two	definitions	are	equivalent,	we	must	demonstrate	equivalence
isomorphism	c	(ld,	c)	Ã	¢	°	d	...	(d,	rc)	and	the	existence	of	two	natural	transformations:	the	unit	Ã	Â	·	and	Ã®Î¼	count.	In	the	text	that	demonstrated	it	c	(ld,	c)	Ã	¢	Ã	¢	...	d	(d,	rc)	implies	the	existence	of	Ã	Â	·	and	that	the	existence	of	Ã	Â	·	and	"imp	lica	the	existence	of	a	mapping	from	c	(l	d,	c)	to	d	(d,	r	c).	In	P18.2,	we	have	shown	that	c	(l	d,	c)	Ã	¢	Ã
¢	...	d	(d,	r	c)	implies	the	existence	of	Ã®Î¼.	Therefore,	we	still	need	to	prove	that	the	existence	of	Ã	Â	·	and	"implies	the	existence	of	a	::	d	(d,	rc)	->	c	(ld,	c)	for	some	morphisms	f	::	d	-	>	rc,	we	can	apply	Ã®Î¼c	*	l	to	form	the	morphism:	it	Î¼c.	L	f	=	ld	->	Ã®Î¼c	l.	R	c	=	ld	->	c	=	AF	P18.4	/	5	Show	that	the	coproduct	can	be	defined	by	an	award.
Start	with	the	definition	of	fattorezer	for	a	coproduct.	Show	that	the	coproduct	is	the	left	downwind	of	the	diagonal	functor.	solution	(in	this	solution,	we	assume	c	is	set	or	Hask)	we	want	to	show	that	c	(	it	is	ab,	c)	Ã	¢	Ã	¢	...	(You	c	-	c)	(,	®	"c).	A	homset	in	cxc	is	(cÃ	-c)	(,	A®	"c),	which	consists	of	pairs	of	functions	A	->	c,	B	->	ce	a	omoseggio	in	c	is	c
(AB,	c),	which	consists	of	functions	(both	AB	->	c)	we	can	define	a	natural	transformation	between	these	two	homset	with	the	functions	of	Fattoresorizzatore	and	Inversefactor.	Fattorezer	::	(cÃ	-c)	(,	A®	"c)	->	c	(or	AB,	C)	Inversefactorizzatore	::	C	(AB,	C)	->	(...	c)	(,	Ã"	c)	We	can	write	them	in	pseudo-Haskell	as	Fattorezer:	(a	->	c),	(B	->	c))	->	(AB	->
c)	Fattorezer	(I,	J)	(to	left)	=	IA	Fattorezer	(I,	J)	(right	B)	=	JB	Inversefactororizer:	:	(AB	->	c)	->	((A	->	c),	(B	->	c))	Inversefactororizer	M	=	(\	A	->	M	Left	A),	(\	B	->	M	right	b)	now	note	that	because	©	these	are	both	polymorphic	in	a,	B,	C,	both	Fattorezer	Inversefactorizzatore	that	are	natural,	then	c	(AB,	c)	Ã	¢	...	(you	c	-	c)	(,	®	"c)	.	P18.6	Define	the
addressing	between	a	product	and	an	object	function	in	Haskell.	::	ProdottoTofunction	Solution	((z,	a)	->	B)	->	(Z	->	(A	->	b))	ProdottoTofunction	F	=	\	Z	->	(\	A	->	f	(z,	a))	FuncToProdotto	::	(	z	->	(a	->	B))	->	((z,	a)	->	b)	functiontoproduct	f	=	\	Z_A	->	((f	(FST	Z_A))	(snd	Z_A))	Section	19:	free	/	Forgetful	ADDITIONS	Solution	Forward	consider	a
morphism	from	the	free	monoid	with	Singleton	the	Set	as	a	generator	m.	This	morphism	map	the	generating	element	and	in	some	m1	m.	There	is	exactly	one	nell'Homsint	function	between	the	set	of	singleton	and	the	underlying	set	that	maps	M	()	to	M1,	then	we	can	define	a	mapping	forward.	Back	Consider	a	function	from	Singleton	set	on	the	set	of
m	below.	This	function	Ã	¢	â	¬	Å	Coschi	Â	»a	single	element	M1	from	the	set	underlying	m.	We	can	exactly	define	a	omomomorfismo	between	singleton	free	monoid	em	that	maps	the	generating	element	M1	And,	since	©	any	homomorphism	must	satisfy	the	following:	1	->	Unit	E	->	M1	EE	->	M1M1	Eee	->	So	there's	M1M1m1	¨	Exactly	one	of	this
type	of	homomorphism	and	we	can	define	a	backward	mapping.	Section	20:	MONADS:	Programmer	definition	(without	challenges)	Polievalmente	Solution	::	[Double]	->	Double	->	Double	Polyeval	Coefficients	Value	=	Piedr	(\	(Power	Coefficient)	Sumsofar	->	Sumsofar	+	Coeff	(value	**	power))	0.0	(zip	[0	..]	coefficients)	instrue	=	99.0	==	(polieteval
[-1,	0,	4]	5)	p24.2	Generalize	the	previous	construction	a	a	Of	many	independent	variables,	like	x	^	2y-3Y	^	3z.	RaiseAndProd	solution	::	[Double]	->	[Double]	->	Double	RaiseAndProd	Powers	=	Foldr	((value,	power)	PRODSOFAR	->	PRODSOFAR	*	(value	**	power))	1.0	(zip	powers	values)	PolyMultieval	::	[(	Double,	[Double])]	->	[Double]	->	Double
Values	PolyMultieval	CoeffSEXPS	=	Foldr	(	(Polymultieval	[(1,	[2,	1,	0]),	(-3,	[0,	3,	1])]	[3,	5,	7]))	isstrue2	=	1.0	==	(Polymultieval	[(1,	[2,	1])]	[1,	1])	P24.3	Implement	the	algebra	for	the	2A	Ring	2	matrices.	Data	solution	MATEXPR	=	RZERO	|	RONE	|	RCompa	|	RCOMPB	|	RCOMPC	|	RCOMPD	|	Radd	Matexpr	MateXPR	|	RMUL	MATEXPR	MATEXPR	|
RNEG	TYPE	MATEXPR	MATRIXTWOTWO	=	(Double,	Double,	Double,	Double)	MCompa	::	MatrixtwoWo	MCompa	=	(1,	0,	0,	0)	MCompb	::	Matrixtwo	MCompb	=	(0,	1,	0,	0)	MCompC	::	MatrixtwoWo	MCompc	=	(0,	0,	1,	0)	MCompD	::	Matrixtwowo	MCompD	=	(0,	0,	0,	1)	MZero	::	MatrixtwoWo	MZero	=	(0,	0,	0,	0)	Meye	::	Matrixtwowo	Meye	=	(1,	0,	1,
0)	Madd	::	MatrixtwoWo	->	MatrixtwoWo	->	Matrixtwotwo	Madd	(A1,	B1,	C1,	D1)	(A2,	B2,	C2,	D2)	=	(A1	+	A2,	B1	+	B2,	C1	+	C2,	D1	+	D2	)	Mat.Product	::	MatrixtWotwo	->	MatrixtwoWo	->	MatrixtwoWo	Matr.Prodotto	(A1,	B1,	C1,	D1)	(A2,	B2,	C2,	D2)	=	(A1	*	A2	+	B1	*	C2,	A1	*	B2	+	B1	*	D2,	C1	*	A2	+	D1	*	C2,	C1	*	B2	+	D1	*	D2)	MNEG	::
MatrixtwoWo	->	MatrixtWotwo	MNEG	(A1,	B1,	C1,	D1)	=	(-A1,	-B1,	-C1,	-D1)	Evalz	::	matexpr	->	matrixtwotwo	evalz	rzero	=	mzero	evalz	rone	=	meye	evalz	rcompa	=	mompa	evalz	rcompb	=	mccompb	evalz	rcompc	=	mcompc	evalz	rcompd	=	mccompd	evalz	(radd	e1	e2)	=	madd	(evalz	e1)	(evalz	e2)	evalz	(rmul	e1	E2)	=	Mat.Prodotto	(Evalz	E1)
(Evalz	E2)	EV	ALZ	(RNEG	E)	=	MNEG	(Evalz	e)	MatrixExPressed	su	::	Matexpr	MatrixExpression	=	RMUL	(RCompa	RCOMPB)	(Radd	RCOMPC	RCOMPD)	ISTRUE	=	(1.0,	1.0,	0.0,	0.0)	==	(Evalz	MatrixExpression))	P24.4	Defining	a	coalgebra	to	which	anamorphism	produces	a	list	of	natural	numbers.	NewType	Fix	F	=	Fix	solution	(F	(Fix	f))	Unfix	::
Fix	F	->	F	(Fix	f)	Unfix	(fix	x)	=	x	CAT	::	Functor	F	=>	(FA	->	A)	->	Fix	F	-	>	A	CATA	ALG	=	ALG.	FMAP	(Catura	ALG).	UNFIX	ANA	::	FUNCTOR	F	=>	(A	->	F	A)	->	A	->	FIX	F	ANA	coalg	=	FIX.	FMAP	(Ana	Coalg).	Data	Coalg	Streamf	EA	=	Streamf	EA	resulting	Functor	tolistC	::	FIX	(STREAMF	E)	->	[E]	=	TOLISTC	CATA	UNTIL:	STREAMF	AND	[E]	-
>	[E]	AL	(STREAMF	BIS)	=	E:	A	NAT	::	[int]	->	streamf	int	[int]	nat	(p:	ns)	=	streamf	(p	^	2)	ns	squaresstream	::	fix	(streamf	int)	squaresstream	=	Ana	nat	[0	..]	squareslist	::	[int]	squareslist	=	TOLLISTC	SquaressTREAM	P24.5	Use	UNFOLDR	to	generate	a	list	of	first	N	numbers.	Solution	Listsieve	::	[int]	->	maybe	(int,	[int])	listsieve	(p:	ns)	=	just	(p,
(filter	(filter	(noddiv	p)	ns))	where	notdiv	pn	=	n	`mod`	p	/	=	0	primefilteredlist	::	[int]	=	primefilteredlist	unfoldr	listsieve	[2	..]	=	istrue1	primefilteredlist	!!	0	==	2	ISTRUE2	=	PRIMEFILTEREDLIST	!!	3	==	7	Section	25:	Algebras	per	monadi	solution	First,	note	that	F	A	=	(T	A,	ÃžÂ¼a).	Since	Ã¯	Ã¯	is	natural,	let's	see	that	t	f.	ÃžÂ¼a	=	Ãžâ¼b.	(T.	T)	f.
Therefore,	for	some	f	::	a	->	b,	the	action	of	f	on	f	is:	f	fmap	(t	a,	ÃžÂ¼a)	=	(.	Fmap	f	t	a,	t	f	ÃžÂ¼a)	p25.2	defining	Add	option:	u	^	w	Ã,	£	f	^	w	solution	first	define	the	unit	i	Â	·:	i	->	f	^	w.	^	w.	because	ita	the	case	that	f	^	w.	^	W	(W	a,	f)	=	f	^	w	(w	a)	=	(ww	a,	Ãž'wa)	Ãž	Â	·	Map	needs	(w	a,	f)	->	(ww	a,	Ãž'wa).	We	can	perform	the	operation	using	F,
the	co-algebra	co-evaluator,	to	define	the	component	of	Ãž	Â	·	A	(W	A,	F)	subsequently,	defines	the	co-unit	Ãžî¼	::	U	^	W.	F	^	w	->	i.	because	ita	the	case	that:	u	^	w.	f	^	w	a	=	u	^	w.	(w	a,	i'a)	=	w	a	Ãžî¼	must	map	w	a	->	a	way	You	can	use	the	extracted	method	of	the	co-monad	to	define	the	Ãžî¼	to	wa	component.	P25.3	Demonstrate	that	the	above
adds	reproduces	the	original	Comonad.	Solution	First	of	all,	you	can	use	the	of	adding	Ãžî¼	as	extract	co-monadic,	since	Ãžî¼wa	w	a	=	forward,	we	can	use	the	unity	of	the	adding	to	define	the	duplicate	co-monadic	the	horizontal	horizontal	composition	Natural	transformations	U	^	w	Ã	¢	-	|	Â	·	Â	·	Ã	¢	-	|	F	^	w	where	U	^	w:	u	^	w	->	^	w	and	f	^	w:	f
^	w	->	f	^	w.	From	f	^	w	get	up	at	(wa,	Ãž'a),	Ãž	Â	·	Choose	co-valuauator	Ãž'a	that	map	wa	->	ww	a	and	u	^	w	has	no	action	on	morphisms,	let's	see	that	duplicate	=	U	^	w	Ã	¢	-	|	Ãž	Â	·	Ã	¢	-	|	F	^	w.	Section	26:	End	and	Coendi	(without	challenges)	Solution	If	F:	A	->	B	is	the	truth	pullback	along	the	feature	function,	then	for	any	A	*,	F	*:	A	*	->	B,
there	is	a	bit	of	h	:	A	*	->	to	these	that	f	*	=	f.	H	Consider	the	case	in	which	a	*	is	the	image	of	F	and	F	*	is	the	identity.	If	f	is	not	injured,	then	for	E1,	E2,	E1!	=	E2	In	such	that	F	(E1)	=	F	(E2),	H	can	mapping	F	(E1)	=	F	(E2)	to	E1	or	E2.	So	H	would	not	be	unique,	which	implies	that	F	must	be	injured.	Section	30:	LawVerete	theorie	solution	(0->	0,	1->
0)	(0->	0,	1->	1),	(0->	0,	1->	2),	(0->	1,	1	->	0)	(0->	1,	1->	1),	(0->	1,	1->	2)	P30.2	shows	that	the	category	of	models	for	the	theory	of	the	monoid	laboratories	is	equivalent	to	the	category	of	algebre	Monadads	for	the	Monad	list.	First	solution,	it	is	noted	that	the	category	of	models	of	the	workshop	theory	for	monoids	is	equivalent	to	the	category	of	all
the	monoids,	Monday	now	we	will	demonstrate	that	Mon	is	equivalent	to	the	category	of	Monad	Algebras	for	the	Monad	list.	First	of	all,	given	a	monoid	over	the	set	A,	we	can	produce	a	algebra	(A,	F)	where	to	raise	the	List	L	by	the	monoidal	product	of	the	elements	of	L.	ahead,	given	a	algebra	(A,	F),	we	can	produce	a	monoid	above	One	defining	the
monoidal	product	of	A1,	A2	to	be	f	([A1]	cat	[A2]).	The	unit	of	this	monoid	is	[],	and	due	to	the	condition	of	Monad	f.	Ãž	Â¼a	=	f.	T	F	We	see	that:	F	[A1,	F	[A2,	A3]]	=	F	[A1,	A2,	A3]	=	F	[F	[A1,	A2],	A3],	so	the	law	of	the	Monoid	Association	is	automatically	satisfied.	Solution	Binary	operations	in	the	theory	of	the	monoid	laboratories	are	elements	of
LMON	HOMST	(2,	1),	which	are	functions	of	two	arguments	that	we	can	only	implement	with	the	monoidal	operator.	Each	of	these	functions	can	be	defined	by	a	list	composed	by	only	those	2	unique	elements.	Because	each	Kleisli	arrow	in	the	Klelis	KLT	(1,	2)	corresponds	to	a	list	composed	of	elements	from	the	set	of	elements	2,	we	can	represent
each	binary	operation	in	the	theory	of	the	monoid	laboratories	with	a	kleisli	arrow	in	KLT	(1,	2).	Solution	DÃ¬	K:	Set	->	FINset	is	a	functor	that	incorporates	a	set	in	Finset	Finset,	such	that	for	any	finished	set	N	in	Set,	K	N	=	n.	Then	Finset	(K	N,	a)	is	a	hom-set	between	elements	in	FINST,	and	so	Finset	(K	N,	A)	=	A	^	(K	N)	=	A	^	n.	Now	consider	a
financial	worker	F.	The	Kan	Left	Extension	of	the	FÃ	¢	â,¬	FINSET	LONG	LONG	restriction	is	LANK	FA	=	Ã,	â	â	â	^	N	FINSET	(KN,	A)	Ãƒ-	FN	=	Ã	¢	Â	^	Na	^	n	Ãƒ-	f	=	definition	of	jobs	hay	f,	therefore	a	financial	functional	is	the	left	kan	extension	of	its	restriction.	Section	31:	Monads,	Monoids	and	Categories	Solution	The	unitary	law	The	left	and
right	compositions	of	any	Endo-1-cellular	cell	T	and	the	ID	identity	1-cell	ID	are	T.	ID	and	ID.	T.	With	the	definition	of	a	bytegory	there	are	invertible	2	cells	that	manage	each	of	these	cells	endo-1	to	T.	Associationy	Law	gave	three	cells	endo-1	T1,	T2,	T3,	from	the	definition	of	a	Blategorio	exists	to	2-cell	What	map	between	((T1.	T2).	T3	and	T1.	(T2.
T3).	Solution	A	monad	in	Span	consists	of	an	endo-1	cell	that	has	the	AR	sets,	OB	with	DOM	functions:	AR	->	OB	COD	::	ar	->	ob	and	2-cell	associated:	ÃžÂ¼:	ar	x	ar	->	ar	Ãž	â	·:	ob	->	ar	this	monad	defines	a	category	consisting	of	objects	in	ob	and	arrows	in	ar,	where	each	Arrow	in	AR	colleague	Dom	AR	to	COD	AR.	Identity	Ãž	Â	·	Assign	an	identity
arrow	to	each	object	so	that	Dom.	Ãž	Â	·	=	ID	Cod.	Ãž	Â	·	=	ID	so	for	any	OB	object	in	OB	and	arrow	A1	in	AR	where	COD	A1	=	O1,	let's	see	that:	DOM	(Î¼Â¼	(A1,	Ãž	Â	·	O1))	=	DOM	A1	COD	(Î¼Â¼	(A1,	Ãž	Â	·	O1))	=	COD	(Ãž	Â	·	O1)	=	O1	=	COD	A1	so	the	composition	of	an	arrow	The	identity	arrow	does	not	change	that	domain	of	the	arrow	or
codomain.	Associativity	of	the	lawsuited	law	for	Î	±	Î¼	Â¼	(AR	X	¼	Â¼	(AR	X	AR))	=	Î	±	(Î¼Â¼	(AR	X	AR)	X	AR)	Therefore,	for	any	arrows	A1,	A2,	A3,	see	that	A1.	(A2.	(A2.	A3)	=	(A1.	A2).	A3	P31.3	Show	that	a	nun	in	the	prof	is	a	functor	Identity	-on-objects.	In	Solution	prof,	we	define	a	monada	with	an	endo-parlunctor	t	such	that	T:	COP	XC	->	set.
The	composition	is	parlunttori	(q.	P)	ab	=	Â	«Ã	^	CPCA	then	-qbc	the	composition	with	T	itself	is:	(t)	=	cc	Ã	Â	"Ã	^	CTCC	-tc	c	=	/	/	existential	quantifier	TCC	which	implies	that	T	must	map	each	object	in	ca	himself.	P31.4	What	is	algebra	monada	monada	in	a	span?	Solution	Given	a	nun	M	In	addition	to	some	items	A,	we	form	an	algebra	on	this
monada	with	a	map	ALG	::	M	A	->	A	satisfying	the	conditions	of	commutativity.	For	a	monada	in	span,	we	can	use	DOM	or	Cod	for	ALG.	Identity	alg.	Ã	Â	·	A	=	IDA	This	applies	to	the	definition	of	Â	·	for	associativity	associativity.	It	Â¼a	=	alg.	M	alg	Without	loss	of	generality,	we	can	see	the	following:	Sun	Ã	Â¼A	(A1,	A2)	=	A1	=	DOM	the	DOM.	Dom
M	(A1,	A2)	Tags:	Theory	of	category	Functional	Programming,	Mathematics,	solutions	Page	2	I	attended	recently	ICLR	2019	in	New	Orleans,	and	I	was	fortunate	to	have	the	opportunity	to	show	our	paper	on	a	new	form	of	attention	and	understanding	of	the	image	data	set.	I	really	enjoyed	the	entire	conference,	and	I	thought	to	share	brief	overviews
of	two	of	my	favorite	presentations	from	the	workshops	and	the	main	program.	Keynote	Keynote	Jure	Leskovec	on	Ã	¢	â,¬Å	Deep	Graph	Generative	Models	"at	learning	the	representation	within	the	laboratory	of	graphs	and	manifolds.	The	modeling	problems	of	the	generative	graphics	take	a	number	of	forms.	For	example,	one	of	the	types	the	most
common	problems	is	simply:	given	a	distribution	of	graphics	defined	by	some	set	of	data,	create	a	new	graph	from	the	distributor.	another	example	is:	Generates	a	graph	as	close	as	possible	to	a	distribution	graph	or	chart	destination,	but	it	also	optimizes	a	given	constraint.	for	example,	we	may	use	a	method	like	this	to	create	a	new	molecule	that	has
a	certain	amount	of	solubility	or	special	properties	while	maintaining	its	reactive	properties.	There	are	a	large	number	of	significant	challenges	in	this	domain.	for	example,	the	output	space	(nodes	and	edges)	is	both	large	and	highly	variable.	This	makes	it	challenging	to	use	the	types	of	techniques	that	have	It	has	been	successful	in	viewing	activity	or
the	short	text	processing.	Worse	worse,	graphical	representations	are	not	unique.	The	same	graph	can	be	represented	in	many	different	ways	and	determine	if	two	structures	of	the	graph	are	identical	is	difficult.	This	makes	it	difficult	to	keep	track	of	convergence.	Jure	has	introduced	two	modeling	paradigms	of	example	to	solve	these	problems:
graph-rnn	Idea:	if	we	generate	charts	based	on	a	sequence	that	defines	the	addition	of	new	nodes	and	edges,	we	can	represent	the	permutations	of	the	node	and	the	different	representations	of	the	graph	as	different	sequence	orders.	Graph-RNN	RNN	generates	graphics	based	on	a	format	to	mimic	a	distribution	graph.	The	graphs	are	represented	as
sequences	of	nodes	and	edges,	each	added	one	at	a	time.	This	process	works	according	to	two	RNN	which	they	relate	and	modify	an	adjacency	matrix:	one	RNN	generates	new	columns	in	the	matrix	(by	adding	vertices)	The	other	populates	that	column	with	1	/	0S	(adding	borders)	to	improve	the	transformation,	we	can	making	the	assumption	that
build	according	to	the	districts.	When	we	add	a	new	node,	we	add	only	the	edges	to	the	last	n	nodes.	What	allows	us	to	generate	more	graphics	much	more	easily	large	and	let	each	generation	phase	involves	only	a	fixed-size	array.	of	political	network	Idea	convocativa	graphic:	use	a	RL	sequentially	policy	to	change	a	graphic	to	optimize	a	kind	of
objectives,	subject	to	some	constraints	limits.	This	requires	of	the	graph	to	optimize	immediate	and	long-term	awards	and	combines	the	graphic	representation	and	the	intermediate	graph	learning	rewards	are	provided	to	keep	the	valid	molecule	valid,	while	the	broader	final	reward	is	provided	at	the	end	of	the	graph	construction	if	the	molecule
Meets	the	constraints.	This	means	that	in	the	short	term	Ã	¢	â,¬	Å	"invalidationsÃ	¢	â,¬	of	the	chart	are	rewarded	later	if	the	molecule	dates	back	to	a	This	makes	the	graphic	construction	and	modification	of	more	flexible	processes	of	a	rigid	constraint.	We	can	also	add	an	additional	loss	based	on	a	discriminator	that	attempts	to	distinguish	the
molecule	generated	by	a	real	model	(similar	to	a	gan).	Some	special	cases	for	example	include	a	maximizing	this	property	¢,	a	Get	this	property	in	a	certain	range,	Ã,	optimize	this	property	within	a	fixed	number	of	passages	so	that	the	overall	structure	is	maintainedÃ	¢.	Jonathan	FrankleÃ	¢	s	speaks	on	the	lottery	ticket	the	pruning	is	a	common
technique	to	find	a	small	subnetworkÃ	¢	Ã	¢	within	a	larger	trained	network	that	carries	out	almost	as	well	as	the	broader	network.	This	technique	involves	the	formation	of	the	network,	eliminating	the	edges	that	do	not	contribute	significantly.	Although	this	technique	tends	to	work	well,	if	we	can	a	great	network	and	then	try	to	form	the
sophisticated	subnet	from	scratch,	we	see	significantly	reduced	performance.	The	authors	show	that,	in	some	cases,	if	we	observe	the	initialization	of	the	subnet	exactly	the	same	as	it	was	during	the	great	training	network	and	then	train	from	scratch,	the	subnet	will	end	with	the	same	performance	as	the	complete	network.	This	leads	to	the	Lottery
ticket	hypothesis:	a	dense	neural	network-initialized	case,	contains	a	subnet	that	is	initialized	in	such	a	way	that,	when	trained	in	isolation	you	can	combine	the	accuracy	of	the	original	network	test	after	the	workout	for	at	most	The	same	number	of	iterations.	This	is	a	truly	exciting	result,	because	suggestions	that	a	more	intelligent	initialization
strategy	can	allow	you	to	achieve	a	significant	performance	performance	improvement	with	much	smaller	networks.	For	the	moment	the	only	way	to	find	this	subnet	is	to	form	and	dried	plum,	but	hopefully	to	change	in	the	future.	TAGS:	ICLR,	Machine	Learning,	ML,	Neural	Network,	Conference	Page	3	As	researchers	apply	machine	learning	to	more
and	more	complex	tasks,	there	is	no	assembly	of	interest	in	strategies	to	combine	multiple	simple	models	in	more	powerful	algorithms.	In	this	post	we	will	analyze	some	of	these	techniques.	We	will	use	some	language	from	the	theory	category,	but	not	much.	In	the	discussion	following	we	will	use	the	following	notation	and	terminology:	Machine
Learning	models	are	functions	of	the	shape	(DRROW	(X	RightRow	Y)	where	(D)	is	a	set	of	data	and	(X	(X	RIGHTARROW	Y)	It	is	a	function	that	maps	the	samples	in	space	(x)	for	samples	in	space	(Y).	The	Data	Set	(D)	can	contain	pairs	of	samples	(X,	Y)	in	X.	Times	y)	(supervised	learning),	only	examples	(X)	(not	supervised	learning)	or	other.	It	is
naturally	a	very	limited	perspective	on	Machine	Learning	models.	Although	this	post	will	mainly	concentrate	on	supervised	and	non-supervised	learning,	there	are	many	more	composition	examples	in	the	reinforcement	learning	and	beyond.	The	most	general	way	of	combining	Machine	Learning	models	is	just	to	put	them	a	hidden	side	to.	There	are
some	ways	to	do	this:	product	models	date	of	forms:	[t_1:	d_1	rightarrow	(x_1	rightarrow	y_1),	t_2:	d_2	rightarrow	(x_2	rightarrow	y_2)	can	be	connected	in	parallel	to	get	a	model:	[H:	D_1	times	D_2	RightRrew	(x_1	times	x_2	RightRrew	Y_1	Times	Y_2),	both	at	training	time	and	inference	The	composite	model	independently	performs	component
models.	We	can	think	of	this	type	of	composition	as	a	zoom	out	our	point	of	view	to	see	the	two	separate	and	non-interacting	models,	as	part	of	the	same	complex.	In	backprop	as	functor	the	authors	define	this	type	of	composition	to	be	the	single	product	in	their	category	(LEARN).	For	example,	say	we	have	Software	system	that	contains	two	modules:
one	for	the	formation	of	a	linear	regression	on	the	record	guide	to	predict	insurance	premiums	and	one	for	the	formation	of	a	decision-making	tree	on	credit	history	to	predict	mortgage	approvals.	We	can	think	of	this	system	as	containing	a	single	module	that	trains	a	linear	regression	(Times)	Tree	decision	on	driving	driving	pairs	And	the	credit
history	to	predict	pairs	of	insurance	and	credit	history	awards.	Ensemble	given	a	set	of	learning	machine	models	that	accept	the	same	entry,	there	are	a	series	of	side-by-side	composition	strategies,	called	ensemble	methods,	which	involve	running	each	model	on	the	same	input	and	then	apply	a	sort	of	Aggregation	function	for	their	production.	For
example,	if	the	models	of	the	series	all	the	outputs	generate	in	the	same	space,	we	could	simply	form	independently	and	medically	they	are	outputs.	The	models,	in	a	merger	are	generally	formed	in	concert,	perhaps	on	different	slices	of	the	same	data	set.	Input-output	composition	Another	way	to	combine	machine	learning	models	is	to	use	the	output
of	a	model	as	input	to	another.	That	is	to	say,	say	that	we	have	two	models:	[T_1:	D_1	RightRrew	(x	RightRrew	y),	T_2:	D_2	RightArrow	(Y	RightRrew	Z)	that	we	combine	in	a	model	(H:	D_3	RightRrew	(	X	RightRrew	Z).	At	the	time	inference,	(h)	operates	on	some	(X)	by	performing	the	first	qualified	version	of	(T_1)	to	obtain	a	(Y)	and	then	run	the
trained	version	of	(	T_2)	UP	(Y)	to	obtain	the	result	(z	in	z).	In	this	context,	there	are	a	number	of	ways	we	can	train	(T_1)	and	(T_2):	unsupervised	feature	transformations	the	simplest	form	of	input-output	composition	is	the	classless	functioning	class	transformations	learned.	In	this	case	(D_1)	is	a	set	of	samples	data	from	(X)	and	(T_1:	D_1	RightRrew
(x	RightRow	y)	is	an	automatic	learning	algorithm	without	surveillance.	In	function	transformations	not	supervised	learning	processes	(t_1)	and	(t_2)	proceed	in	sequence:	(t_2)	is	trained	on	the	output	of	(t_1),	and	this	training	does	not	start	up	to	(T_1)	is	completely	trained.	Once	(T_1)	is	completely	trained,	we	use	it	and	(D_1)	to	create	the	data	set
(D_2)	of	samples	in	(y	times	z)	that	we	use	to	form	(t_2)	.	Some	examples	of	this	include:	PCCA:	(t_1)	Learn	a	linear	projection	from	(x)	for	a	subspace	(Y).	Standardization:	(t_1)	discovers	the	means	/	deviations	of	each	component	of	(x)	and	transforms	samples	from	(x)	reassuring	them	to	be	zero	norm	and	unitary	variance.	GMM:	(T_1)	discovers	a
mapping	from	the	space	(Y)	of	probability	vectors	a	posteriori	for	each	component	of	the	mixture.	Supervised	characteristic	transformations	such	a	similar	form	but	slightly	more	complex	composition	input-output	is	the	supervision	class	include	learned	transformations.	In	this	case	(D_1)	is	a	set	of	samples	data	from	(X	Times	Z)	and	(T_1:	D_1
RightRrew	(x	RightRrew	y)	is	an	automatic	learning	algorithm	that	transforms	samples	(x)	in	a	form	(y)	which	can	be	cheaper	for	a	model	that	aims	to	generate	predictions	in	(z)	to	consume.	Just	as	in	the	Transformations	function	without	surveillance,	the	learning	processes	of	the	(t_1)	and	(t_2)	proceeds	sequentially	and	we	use	the	qualified	version
of	(t_1)	and	the	data	set	(d_1)	for	Create	the	data	set	(D_2)	of	samples	in	(Y	Times	Z)	we	use	to	form	(T_2).	Some	simple	examples	of	this	include:	functional	selection:	(t_1)	transforms	(x),	eliminating	the	characteristics	that	are	not	useful	for	the	forecast	(z).	Supervised	Discretization:	(T_1)	Learn	to	represent	samples	from	(X)	as	one-hot	coded	bans
vectors,	in	which	containers	are	chosen	based	on	the	ratio	between	the	distributions	of	the	components	of	(x)	(Z).	An	overall	example	of	a	characteristic	controlled	transformation	is	the	vertical	composition	of	decision	trees.	If	we	have	two	sets	of	rules	From	which	we	can	build	decision	trees,	we	can	combine	to	form	a	composite	decision-making	tree
that	first	applies	all	the	rules	of	the	first	group	and	then	applies	all	the	rules	in	the	second	group.	End-to-end	end-to-end	training	training	is	probably	both	the	most	complex	and	more	studied	form	of	the	input-output	composition	of	learning	machine	models.	This	card	and	this	document	and	this	document	all	categories	build	on	this	type	of
composition.	In	in	unsupervised	and	transformations	feature	supervision,	the	training	process	for	\	(T_2	\)	does	not	begin	until	\	(T_1	\)	is	fully	trained.	On	the	contrary,	in	the	end-to-end	principle	training,	we	train	\	(T_1	\)	and	\	(T_2	\),	at	the	same	time	by	a	series	of	samples	in	\	(X	\	times	Z	\).	We	never	explicitly	build	the	datasets	\	(D_1	\)	or	\	(D_2	\).
In	general,	we	need	our	machine	learning	models	to	have	a	special	structure,	in	order	to	use	this	strategy.	For	example,	the	Backprop	as	functor	paper	defines	the	concepts	of	required	functional	and	updated	to	feature	this.	Because	of	the	chain	rule,	we	can	define	these	functions	and	use	end-to-end	training	every	time	that	our	models	are	parametric
and	differentiable.	The	most	clear	example	of	end-to-end	principle	training	is	the	composition	of	the	layers	in	a	neural	network	that	we	form	with	Backpropagation.	In	meta-learning,	or	learning	to	learn,	training	or	updateÃ	¢	Ã	¢	feature	for	a	machine	learning	model	is	defined	by	another	model	Machine	Learning.	In	some	cases,	such	as	those
described	in	this	document,	we	can	define	a	concept	of	composition	where	\	(T_1	\	circ	T_2	\)	is	a	model	with	an	equivalent	function	to	that	of	inference	\	(T_1	\)	and	a	training	function	defined	based	\	(T_2	\)	Ã	¢	s	inference	and	training	functions.	This	is	described	in	greater	detail	for	the	case	parametric	differentiable	here.	Conclusion	This	is	just	a
small	sample	of	techniques	to	build	complex	models	with	simple	components.	Machine	Learning	is	growing	rapidly,	and	there	are	many	other	approaches	to	model	the	composition	of	those	addressed	here.	Tags:	machine	learning,	neural	networks,	category	theory,	composition	Page	4	In	this	post,	we'll	see	how	discriminating	/	generative	and
frequentist	/	Bayesian	algorithms	make	different	decisions	about	which	variables	to	model	probabilistically.	There	are	many	ways	to	characterize	the	machine	learning	algorithms.	This	is	a	direct	consequence	of	the	rich	history,	wide	applicability	and	the	interdisciplinary	nature	of	the	field.	One	of	the	most	clear	characterization	is	based	on	the
structure	of	the	data	and	the	feedback	we	receive	the	model:	supervised	learning,	unsupervised	learning,	semi-supervised	learning	algorithms	and	reinforcement	learning	all	interpret	the	data	and	receive	feedback	differently.	For	the	purpose	of	simplicity,	in	this	post	we	will	focus	exclusively	on	supervised	learning.	We	define	this	as	follows:	given	a
function	\	(f:	\	mathbb	{R}	^	p	\	times	\	mathbb	{R}	^	n	\	rightarrow	\	mathbb	{R}	^	m	\)	that	accepts	a	vector	of	parameters	\	(v	\	in	\	mathbb	{R}	^	p	\)	and	an	input	vector	\	(x	\	in	\	mathbb	{R}	^	n	\)	and	returns	an	output	vector	\	(y	\	in	\	mathbb	{R}	^	m	\),	along	with	a	series	of	labeled	examples	\	(S	=	\	{(x_1,	y_1),	(x_2,	y_2),	...	\}	\)	where	each
example	is	somewhere	distribution	\	(\	mathcal	{S}	\)	on	\	(\	mathbb	{R}	^	n	\	times	\	mathbb	{R}	^	m	\),	determine	a	parameter	value	\	(v	\	in	\	mathbb	{R}	^	p	\)	such	that	\	(f	(v,	x_i)	\	)	is	a	good	approximation	for	\	(y_i	\)	for	all	\	((x_i,	y_i)	\).	If	we	make	the	assumption	that	there	is	a	certain	value	of	\	(v	\	in	\	mathbb	{such	that	\	R}	^	p	\)	(f	(v,	x_i)	=
y_i	\)	for	each	sample	taken	by	\	(\	mathcal	{D	}	\),	then	there	is	no	need	to	model	\	(v	\)	\	(x	\),	or	\	(y	\)	probabilistically	and	we	can	treat	this	problem	as	a	research	or	optimization	function.	However,	this	scenario	is	rare.	Most	frequently,	one	or	both	of	the	following	two	scenarios	are	the	case:	there	is	a	label	Rumorea,	or	some	input	values	\	(x	\)	such
that	for	distinct	\	(y_1,	y_2	\)	V'a	a	chance	nothing	that	either	\	((x,	y_1)	\)	or	\	((x,	y_2)	\)	are	taken	from	\	(\	mathcal	{D}	\).	Alternatively,	you	can	say	that	for	some	fixed	\	(x	\)	Probability	distribution	of	the	value	of	(y)	is	degenerate.	The	real	function	(f	')	that	determines	(x)	cannot	be	expressed	as	(f	(v,	x)	and	is	chosen	by	model	(f'	(x)	-	F	(V,	X),	with	a
distribution	of	probabilities.	Now	Leta	S	for	granted	that	we	find	ourselves	in	one	or	both	of	these	scenarios.	We	will	need	to	shape	the	output	vector	(Y)	probably	in	order	to	find	the	best	value	of	(V).	However,	we	us	The	freedom	to	determine	if	we	want	to	shape	(v)	and	/	or	(x)	also	probably.	Generative	vs	discriminatory	The	distinction	of	the	key
between	a	discriminatory	and	generative	machine	learning	algorithm	is	if	the	IT	models	probably	probably.	An	learning	algorithm	of	the	discriminatory	monitoring	machine	presupposes	that	it	is	fixed	and	learns	the	conditional	distribution	(P	(Y;	X))	(the	terms	to	the	right	of	the	point	and	comma	are	considered	fixed	and	are	not	modeled	probabilically)
.	An	learning	algorithm	of	the	probably	generative	generative	machine	models	(x)	and	learns	the	joint	distribution	(x,	y).	We	can	use	the	distribution	that	a	generative	algorithm	learns	to	make	predictions	of	(Y)	from	a	fixed	rule	with	the	Bayes	rule.	From	the	generative	algorithms	shape	the	joint	distribution,	we	can	use	them	to	draw	samples	from	this
distribution.	This	can	be	useful	to	develop	a	better	understanding	of	our	data.	However,	for	the	task	of	predicting	(x)	from	(x),	the	discriminatory	models	are	better	to	work	unless	there	is	a	very	small	amount	of	data.	In	this	document	the	authors	conclude	that:	(a)	the	generative	model	actually	has	a	higher	asymptotic	error	(since	the	number	of
training	examples	becomes	large)	compared	to	the	discriminatory	model,	but	(b)	the	generative	model	can	also	approach	its	Asymptotic	error	much	faster	than	the	discriminatory	model	Ã	¢	â,¬	"possibly	with	a	number	of	training	examples	that	is	only	logarithmic,	rather	than	linear,	in	the	number	of	parameters.	Frequently	frequent	vs	bayesian	a	key
distinction	between	a	frequented	and	an	algorithm	of	Learning	the	Bayesian	machine	is	whether	it	model	IT	models	(V)	Probabilistically	True	not	unnoticed	by	(V)	in	such	a	way	that	the	data	is	generated	by	applying	the	noise	to	the	function	(F	(V,	-)).	On	the	contrary,	the	model	of	Algorithms	of	appropriates	Endimento	of	the	Bayesian	machine	(V)
probably	and	works	based	on	the	intake	that	the	data	generation	process	includes	a	pass	in	which	(V)	is	taken	from	a	certain	preventive	distribution.	The	fact	that	Bayesian	algorithms	presuppose	that	the	value	of	Ã	¢	â,¬	Ã	¢	â,¬	"of	(V)	is	taken	from	a	distribution	makes	it	easier	to	incorporate	the	knowledge	of	the	domain	in	the	formation	procedure
of	the	model.	AD	Example,	if	we	suspect	that	the	value	of	an	element	of	(V)	will	be	a	scale	other	than	the	value	of	another	element,	we	can	build	a	previous	distribution	that	reflects	this.	The	following	diagram,	similar	to	that	here,	establishes	these	characterizations.	Ã,	frequent	player	bayesian	discriminatory	(p	(y;	x,	v))	(p	(y,	v;	x)	=	p	(y	|	v;	x)	*	p	(v)
generative	(y,	x;	v)	(p	(y,	x,	v)	=	p	(y,	x	|	v)	*	p	(v)	tag:	machine	learning,	probability,	discriminatory,	generative,	frequentist,	bayesian	Page	5	i	Recently	He	went	off	in	a	tangent	trying	to	figure	out	how	white	noise	works,	and	I	discovered	that	there	is	a	lot	of	strangeness	that	may	not	be	evident	at	first	glance.	The	content	of	this	post	is	a	principal
Palce	from:	TLDR:	We	cannot	simply	define	a	continuous	white	noise	process	as	a	(mathbb	{R})	-	indexed	collection	of	unrelated	normal	random	variables	because	this	collection	does	not	exist.	The	problem	with	white	noise	begins	with	some	simple	definitions.	In	the	following	we	will	encomility	that	we	are	working	on	the	well-educated	probability
space	(mathcal	{p}	=	([0.1],	mathcal	{b},	mu),	where	the	lebesgue	measure	(m	mu)	It	is	on	the	Borel	(sigma)	-	algebra	(mathcal	{b}).	A	stochastic	process	Real	value	(x)	is	a	random	variable	value	function	so	that	(xt)	is	a	random	variable	of	real	value	or	a	measurable	function	from	(mathcal	{p})	a	(mathbb	{R}).	We	can	think	about	how	to	represent
time,	but	this	does	not	need	to	be	the	case.	A	stochastic	stochastic	process	is	still	when	its	unconditional	joint	joint	distribution	does	not	change	when	it	is	moved	to	(t).	Ie,	for	any	(tau	in	in	and	(t_1,	...,	t_n	in	mathbb	{r})	We	have	the	joint	distributions	of	the	sets	of	random	variables	((x_	{t_1},	...,	x_	{t_n})	and	(X_	{t_1	+	tau},	...,	x_	{t_n	+	tau})	are
the	same.	White	noise	with	continuous	time	is	often	defined	as	a	stochastic	process	valid	actually	where	you	all	(x_t	=	mathcal	{n}	(0.1))	and	for	everyone	(Taau)	we	have	this	(and	[x	(t)]	and	[x	(t	+	tau)]	is	(sigma	^	2)	when	(tau	=	0)	and	(0)	otherwise.	Ie,	for	all	(t_1,	t_2),	random	variables	(x_	{t_1})	and	(x_	{t_2}})	are	normal	random	variables
unrelated	with	variance	(sigma	^	2).	However,	this	collection	cannot	exist!	To	see	this,	we	define	the	collection	of	random	variables	(Y_T	=	X_T	*	1	_	{|	X_T	|	LEQ	1}).	So	we	have	(y_t)	it	is	chopped	square,	and	then	in	(2	([0.1],	mu).	However,	(2	([0.1],	MU)	is	separable	and	can	therefore	only	continue	to	simultaneously	many	orthogonal	elements.	This
implies	that	not	everything	(x_t)	can	be	mutually	orthogonal.	Work	around	the	problem	to	solve	this,	we	must	use	some	rather	muscular	mathematical	machines.	Basically,	while	we	cannot	define	the	continuous-weather	white	noise	to	be	a	random	variable	value	function	on	(t),	we	can	define	it	as	a	valid	random	variable	valid	function.	To	start,	define
the	Brownian	movement	process	(mathcal	{b})	to	be	a	stochastic	process	that	meets:	[mathcal	{b}	_0	=	0]	if	(0
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